
MATH 311: COMPLEX ANALYSIS — COMPLEX NUMBERS

LECTURE

1. Complex Numbers

The set of complex numbers is

C = {x+ iy : x, y ∈ R}

where

i2 = −1 and ix = xi for all x ∈ R.
The real and imaginary parts of a complex number z = x+ iy are

Re(z) = x,

Im(z) = y (so the imaginary part is real).

Addition of complex numbers is defined by the formula

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′),

and multiplication is defined by the formula

(x+ iy)(x′ + iy′) = (xx′ − yy′) + i(xy′ + x′y)

These make C an associative ring, though the associativity of multiplication is a
bit messy to verify for now.

The real numbers R embed into the complex numbers C, viz.,

ϕ : R −→ C, ϕ(x) = x+ 0i.

The embedding is a ring homomorphism, meaning it respects the operations of
addition and multiplication in the sense that

ϕ(x+ x′) = ϕ(x) + ϕ(x′),

ϕ(xx′) = ϕ(x)ϕ(x′).

From now on we replace R with its embedded image in C.

2. Geometry

Recall that R2 is a vector space over R, meaning that it comes endowed with
addition and scalar multiplication, though it does not come with vector–by–vector
multiplication. One can similarly view C as a vector space over R. The map

p : C −→ R2, x+ iy 7−→ (x, y)

respects the vector space operations, meaning that for any complex numbers z =
x+ iy and z′ = x′ + iy′,

p(z + z′) = p((x+ x′) + i(y + y′))

= (x+ x′, y + y′) = (x, y) + (x′, y′) = p(z) + p(z′),
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and that for any real number c and any complex number z = x+ iy,

p(cz) = p(cx+ icy) = (cx, cy) = c(x, y) = p(c)p(z).

Since p is also a set bijection, it is a linear isomorphism.

But C also has multiplication, so via the map p we can give R2 vector–by–vector
multiplication as well and think of multiplying complex numbers as multiplying
vectors.

Addition in R2 is defined by the parallelogram law.
For multiplication, use polar coordinates. For any nonzero vector (x, y), write

(x, y) =
√
x2 + y2

(
x√

x2 + y2
,

y√
x2 + y2

)
call
= r(cos θ, sin θ)

where r > 0 is called the modulus and θ ∈ [0, 2π) is called the argument . If similarly
(x′, y′) = r′(cos θ′, sin θ′) then the addition laws for the cosine and sine functions,
i.e., the formulas for cos(θ + θ′) and sin(θ + θ′), show that their product is

r(cos θ, sin θ)r′(cos θ′, sin θ′) = rr′(cos(θ + θ′), sin(θ + θ′)).

That is,
the modulus of the product is the product of the moduli

and
the argument of the product is the sum of the arguments .

(But the sum is being taken modulo 2π.)

Return now from R2 to C, so that the polar decomposition becomes

z = r(cos θ + i sin θ).

Thinking of multiplication in polar coordinates makes it easy to extract nth roots.
The formula is[

r(cos θ + i sin θ)
]1/n

= r1/n
[

cos

(
θ

n
+

2kπ

n

)
+i sin

(
θ

n
+

2kπ

n

)]
,

k = 0, 1, . . . , n− 1.

For example, with this formula one can work out that the three cube roots of 8i
are −2i and ±

√
3 + i. (When possible, one should put answers back into Cartesian

form even though the calculations were done in polar form.)

The exponential notation for cos θ+ i sin θ is eiθ. In this notation we have shown
that

reiθr′eiθ
′

= rr′ei(θ+θ
′).

This agrees with the usual rules for exponentiation, but it is not a consequence of
those rules, since before this they only applied in the context of the real numbers.
Also, this formula makes the associativity of multiplication obvious. The formula
makes the existence of multiplicative inverses clear as well,

(reiθ)−1 = r−1e−iθ

since reiθr−1e−iθ = 1. The geometric description of the inverse is that the modulus
is inverted and the argument is negated. Now it is clear that the complex numbers
form a field. Finally, note that ei0 = 1, e±2πi = 1, e±4πi = 1, . . . , e2πik = 1 for all
k ∈ Z.



MATH 311: COMPLEX ANALYSIS — COMPLEX NUMBERS LECTURE 3

3. Complex conjugation and absolute value

The complex conjugate map is

: C −→ C, x+ iy = x− iy.

This is a ring homomorphism of C to itself, i.e., z + z′ = z + z′ and zz′ = z · z′ for
all z, z′ ∈ C. The identities

Re(z) =
1

2
(z + z), Im(z) =

1

2i
(z − z)

let us suppress the components of complex numbers if we are willing to deal in
complex conjugates instead. And of course the identities

z = Re(z) + i Im(z), z = Re(z)− i Im(z)

show that complex numbers and their conjugates are expressible in terms of com-
ponents. In particular, the absolute value of a complex number can be defined in
two equivalent ways,

| | : C −→ R≥0, |z| =
√
zz =

√
x2 + y2.

This agrees with the old absolute value on R (recall that we have identified R with
a subset of C) and it agrees with the usual vector absolute value on R2. It is also
the modulus from the previous section.

Some easy identities to verify are

|z| = |z|,
±Re(z) ≤ |Re(z)| ≤ |z| ≤ |Re(z)|+ |Im(z)|,
±Im(z) ≤ |Im(z)| ≤ |z| ≤ |Re(z)|+ |Im(z)|,

|reiθ| = r,

|zz′| = |z| |z′|,
|z + z′| ≤ |z|+ |z′| (Triangle Inequality).

For the Triangle Inequality: |z + z′|2 = (z + z′)(z + z′) = |z|2 + 2Re(zz′) + |z′|2 ≤
|z|2 + 2|Re(zz′)|+ |z′|2 ≤ |z|2 + 2|zz′|+ |z′|2 = (|z|+ |z′|)2.

The Full Triangle Inequality is∣∣|z| − |z′|∣∣ ≤ |z ± z′| ≤ |z|+ |z′|.
These considerations show how write the multiplicative inverse of a nonzero

complex number without reference to polar coordinates,

z−1 =
z

zz
.

Since the divide is by a positive real we already know it makes sense. In Cartesian
coordinates the inverse of z = x+ iy is

(x+ iy)−1 =
x− iy
x2 + y2

.

And as before, in polar coordinates the inverse of z = reiθ is

(reiθ)−1 = r−1e−iθ.
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4. The exponential map

If we define for general z = x+ iy,

ez = ex+iy = exeiy = ex(cos y + i sin y)

then this is very similar to the polar coordinate map in the sense that

|ex+iy| = ex, arg(ex+iy) = y.

5. Stereographic Projection

Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unit sphere, and let n denote
the north pole (0, 0, 1). Indentify the complex plane C with the (x, y)–plane in R3.

Then inside R3 there is a map, called stereographic projection,

π : S2 − n −→ C

described as follows: place a light source at the north pole n. For any point
(x, y, z) ∈ S2−n, consider a light ray emanating downward from n to pass through
the sphere at (x, y, z). The ray continues on to hit the plane, and the point where
it hits is designated π(x, y, z). The formula works out to

π(x, y, z) =
x+ iy

1− z
for (x, y, z) ∈ S2 − n.

Stereographic projection works out to be conformal.
At times it is handy to think of the sphere instead of the plane. Equivalently,

one “adjoins” a point called “∞” to the plane with the understanding that it
corresponds to the north pole n of S2. Then one speaks about ∞ as as a limit of
complex numbers with the tacit understanding that really one is working on the
sphere and speaking about n.

6. Imaginary?

One does not have to invoke a square root of −1 to construct the complex num-
bers from the real numbers. One alternative is the amnesiac approach of forgetting
where the multiplication rule for R2 came from, that is, how we derived the rule

(x, y)(x′, y′) = (xx′ − yy′, xy′ + x′y),

and instead pull this out of thin air as a definition of multiplication. One can make
the convention that C simply means R2 with this multiplication rule. Then purely
mechanically,

(0, 1)(0, 1) = (−1, 0),

giving a square root of −1 in C.
Another approach is to let C be the ring of polynomials with real coefficients in a

formal unknown X, quotiented out by the ideal of polynomials with real coefficients
generated by the polynomial X2 + 1. That is, in symbols one can define C as a
quotient ring,

R[X]/〈X2 + 1〉.
The algebraic formalism clears away to the practical rule of manipulating polyno-
mials according to all the usual rules and the additional rule X2 + 1 = 0, again
recovering the square root of −1.
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7. Field Properties of C

The field C has good algebraic and analytic properties.
The natural starting field is the rational numbers Q. But thre are two problems:

• Q is not complete: limits that “ought” to exist in Q fail to do so, e.g.,
√

2.
• Q is not algebraically closed : polynomials that “ought” to have roots in Q

fail to do so, e.g., X2 + 1.

The smallest complete field containing Q is the real numbers R. But R is not
algebraically closed, e.g., X2 + 1 still doesn’t have a root in R.

The smallest algebraically closed field containing Q is denoted Q and simply
called the algebraic closure of Q. But Q is not complete, e.g., it doesn’t contain π.
(Note that Q is not a subfield of R, e.g., it contains i.

The complex numbers C are the smallest algebraically closed complete field
over Q.


