MATHEMATICS 311: COMPLEX ANALYSIS — ASSIGNMENT 4

Reading: Marsden, sections 2.4, 2.5.

Problems:

1. Evaluate \(\int_{\gamma} \frac{ze^z}{z + 2i} \, dz \) in the following two cases: (a) \(\gamma = \{ z \in \mathbb{C} : |z| = 1 \} \), (b) \(\gamma = \{ z \in \mathbb{C} : |z| = 3 \} \).

2. Evaluate \(\int_{|z|=1} e^z z^{-4} \, dz \).

3. Show that for any complex number \(t \),
 \[
 \frac{1}{2\pi i} \int_{|z|=3} \frac{e^{zt}}{z^2 + 1} \, dz = \sin t.
 \]

4. Prove Cauchy’s inequality: If \(f \) is analytic in an open neighborhood of the closed disk \(\{ \zeta \in \mathbb{C} : |\zeta - z| \leq r \} \) and if \(f \) satisfies \(|f(\zeta)| \leq M \) whenever \(|\zeta - z| = r \) then \(|f^{(n)}(z)|/n! \leq M/r^n \).

5. Show that if \(f \) is analytic in the entire plane \(\mathbb{C} \), and for some positive real number \(c \) and some nonnegative integer \(n \) and some positive real number \(r_o \) we have \(|f(z)| \leq c|z|^n \) for all \(z \) such that \(|z| \geq r_o \), then \(f \) must be a polynomial of degree at most \(n \). (Hint: Since \(f \) is represented everywhere by its power series about 0, it suffices to show that \(f^{(n+m)}(0) = 0 \), for all positive integers \(m \), i.e., that \(|f^{(n+m)}(0)| \) is arbitrarily small for any such \(m \).)

6. Show that there cannot exist any function \(f \) that is analytic in an open neighborhood of a point \(z \) and satisfies \(|f^{(n)}(z)|/n! > n^n \) for all positive integers \(n \).