Reading: Marsden, sections 1.3, 1.5, 1.6.

Problems:

1. Show that if \(f(z) \) is analytic in a region \(\Omega \) and either \(\text{Re} f(z) \) or \(|f(z)| \) is constant in \(\Omega \) then \(f(z) \) must be constant there.

2. Show that if \(f(z) \) is analytic and its second partial derivatives exist and are continuous then \(\Delta (|f(z)|^2) = 4|f'(z)|^2 \), where \(\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 \).

3. Show that the function

\[
f(z) = \begin{cases}
 e^{-1/z^4} & \text{for } z \neq 0 \\
 0 & \text{for } z = 0
\end{cases}
\]

is analytic at all \(z \neq 0 \), is not analytic at \(z = 0 \), but satisfies the Cauchy–Riemann equations at \(z = 0 \). (For \(z \neq 0 \), decompose \(f \) as a composition of functions each known to be analytic; to show \(f \) is not analytic at 0 it suffices to show \(f \) is not even continuous at 0; the form \(f_x = -if_y \) of the Cauchy–Riemann equations is easiest to check at 0.)

4. Extend the trigonometric functions to complex arguments by defining

\[
\sin z = \sin x \cosh y + i \cos x \sinh y \\
\cos z = \cos x \cosh y - i \sin x \sinh y
\]

for all \(z = x + iy \in \mathbb{C} \); here the hyperbolic functions are defined as usual by

\[
\sinh y = \frac{e^y - e^{-y}}{2}, \cos y = \frac{e^y + e^{-y}}{2} \text{ for } y \in \mathbb{R}.
\]

(a) Show that \(\sin z \) is analytic for all \(z \in \mathbb{C} \) and find all points \(z \) for which \(\sin z = 0 \).

(b) Show:

\[
\cos(\pi/2 - z) = \sin z, \cos(z + \pi) = -\cos z, \cos(z + 2\pi) = \cos z, \\
\sin^2 z + \cos^2 z = 1, \cos z = (e^{iz} + e^{-iz})/2 \text{ for all } z \in \mathbb{C}.
\]

(c) Discuss the mapping described by the function \(w = \cos z \). It suffices to consider the strip \(0 \leq \text{Re} z \leq 2\pi \), by periodicity. The cosine function can be written as the composition of the functions \(z \to iz, z \to e^z, z \to (z + z^{-1})/2 \), each of which is familiar. Illustrate suitable restrictions of each of these functions to give a good sense of the composite. On what part of the strip is \(\cos \) 1-to-1? What is its output?

(d) Discuss a single-valued inverse cosine function: where it is defined, a formula for it in terms of the logarithm function, what its branch points are.