
THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN

ENTIRE FUNCTION

These notes are drawn closely from chapter 5 of Princeton Lectures in Anal-
ysis II: Complex Analysis by Stein and Shakarchi.

Let f : C −→ C be nonzero and entire, with infinitely many roots, vanishing to
order m ≥ 0 at 0. The nonzero roots of f , with repetition for multiplicity, form a
sequence {an} such that limn |an| =∞. For an initial product form that attempts
to factor f , first define

E0(ζ) = 1− ζ,

an entire function of ζ that vanishes only for ζ = 1 and goes to 1 as ζ goes to 0.
Thus E0(z/an) vanishes only at z = an, and for fixed z it goes to 1 as n goes to∞.
Then define

p0(z) = zm
∞∏
n=1

E0(z/an) = zm
∞∏
n=1

(1− z/an).

However, this product need not even converge, much less converge to an entire
function that matches the roots of f . We will see that a sufficient condition for
such convergence is that

∑∞
n=1 1/|an| converges, but this condition fails unless

the an are sparse enough.

Recall that log(1 − ζ) = −
∑∞
j=1

ζj

j (principal branch) for |ζ| < 1, and so ex-

ponentiating gives (1 − ζ)e
∑∞
j=1

ζj

j = 1 for such ζ. For any nonnegative integer k
generalize E0 to the k-truncation of this expression of 1,

Ek(ζ) = (1− ζ)eζ+
ζ2

2 +
ζ3

3 +···+ ζ
k

k ,

again an entire function of ζ that vanishes only for ζ = 1. Because

Ek(ζ) = e−
∑∞
j=k+1

ζj

j ≈ 1− ζk+1

k+1 for |ζ| < 1,

Ek(ζ) goes to 1 more quickly for larger k as ζ goes to 0; this approximation will be
made more precise below. Again Ek(z/an) vanishes only at z = an, and so for any
nonnegative integer sequence {kn}n≥1 the expression

p{kn}(z) = zm
∞∏
n=1

Ekn(z/an) = zm
∞∏
n=1

(1− z/an)e
z/an+

(z/an)
2

2 +···+
(z/an)

kn

kn

might be an entire function having the roots as f . This p{kn} improves on p0
because for large enough n to make z/an small, its multiplicands Ekn(z/an) can
be made as close to 1 as desired by choosing larger kn, and we will see that in
particular the sequence {kn} = {n} makes p{kn} converge to an entire function
with the same roots as f .

Once we know that some p{kn} is entire with the same roots as f , their quotient
f/p{kn} defines an entire function that never vanishes. As will be reviewed, the
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2 THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN ENTIRE FUNCTION

quotient therefore takes the form eg with g entire. Thus the factorization of f is

f(z) = eg(z)zm
∞∏
n=1

En(z/an).

So far, these ideas are due to Weierstrass. Hadamard added to them, as follows.
If f has finite order , meaning that for some positive constants A, B, and ρ it
satisfies a growth bound

|f(z)| ≤ AeB|z|
ρ

for all z,

then its roots are sparse; specifically,
∑∞
n=1 |an|−s converges if s > ρ. We will see

that in consequence of this, letting k = bρc, the Weierstrass factorization improves
to

f(z) = eg(z)zm
∞∏
n=1

Ek(z/an),

now with nth multiplicand Ek(z/an) rather than En(z/an). That is, the conver-

gence factors e
∑k
j=1

(z/an)j

j all have equal length k according to ρ. In practical
examples k is often small, e.g., 0 or 1. A second consequence of the sparseness of
the roots is that

g(z) is a polynomial of degree at most k,

as we will also see.
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Part 1. Weierstrass Factorization of an Entire Function

1. Estimate of Ek − 1

Let k be a nonnegative integer. Recall the definition

Ek(ζ) = (1− ζ)eζ+
ζ2

2 +
ζ3

3 +···+ ζ
k

k .

For k = 0 we have E0(ζ) = 1 − ζ and so |E0(ζ) − 1| = |ζ| for all ζ ∈ C. We
generalize this to an estimate of |Ek(ζ)−1| for any k, though now with a condition

on ζ. The argument will show how the factor eζ+ζ
2/2+ζ3/3+···+ζk/k brings Ek(ζ)

closer to 1 for larger k when ζ is small.
Suppose through this paragraph that |ζ| ≤ 1/2; here the 1/2 could be any

positive r < 1 with no essential change to the argument to follow, but we use 1/2
for definiteness. Then

1− ζ = elog(1−ζ) = e
−ζ− ζ

2

2 −
ζ3

3 −···−
ζk

k −
ζk+1

k+1 −···,

and so, because Ek(ζ) = (1− ζ)eζ+ζ
2/2+ζ3/3+···+ζk/k, we have

Ek(ζ) = e
− ζ

k+1

k+1 −
ζk+2

k+2 −···,

which certainly goes to 1 as k grows. Loosely, taking the linear approximation of
the exponential series and then keeping only its lowest-order term after the constant
terms cancel,

Ek(ζ)− 1 ≈ 1 + (− ζ
k+1

k+1 −
ζk+2

k+2 − · · · )− 1 ≈ − ζ
k+1

k+1 .

To make this approximation precise, introduce a convenient abbreviation,

Ek(ζ) = ew where w = wk(ζ) = − ζ
k+1

k+1 −
ζk+2

k+2 − · · · .

Because |ζ| ≤ 1/2,

|w| ≤ |ζ|k+1
∞∑
j=0

1

2j
= 2|ζ|k+1,

and in particular |w| ≤ 1, even for k = 0. This gives |w|j ≤ |w| for all j ≥ 1, and
therefore

|Ek(ζ)− 1| = |ew − 1| ≤
∞∑
j=1

|w|j

j!
≤ (e− 1)|w|.

Together the previous two displays give our desired estimate, improving the ap-

proximation Ek(ζ)− 1 ≈ − ζ
k+1

k+1 to a rigorous bound,

(1) |Ek(ζ)− 1| ≤ 2(e− 1)|ζ|k+1 if |ζ| ≤ 1/2.

2. Infinite product convergence criterion

Let {zn} be a complex sequence, with zn 6= −1 for all n. We show:

If

∞∑
n=1

|zn| converges then

∞∏
n=1

(1 + zn) converges in C× and can be rearranged.
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Begin by noting that all but finitely many zn satisfy |zn| ≤ 1/2. We freely
work only with these zn, for which, using the power series of the principal branch
−π < arg(1 + z) < π of log(1 + z) for z in the open unit disk,

| log(1 + zn)| =
∣∣zn(1− zn/2 + z2n/3 + · · · )

∣∣ ≤ 2|zn|.

Thus the sequence
{∑N

n=1 log(1 + zn)
}

of partial sums of
∑∞
n=1 log(1 + zn) con-

verges absolutely, and so it converges and can be rearranged. Consequently, because
the complex exponential function is continuous, convergence and rearrangeability
also hold for the sequence{

e
∑N
n=1 log(1+zn)

}
=

{
N∏
n=1

elog(1+zn)

}
=

{
N∏
n=1

(1 + zn)

}
.

This is the sequence of partial products of
∏∞
n=1(1 + zn), and the convergence

criterion is established. The argument has shown further that
∏∞
n=1(1 + zn) is

nonzero under the hypotheses on {zn}, because it is e
∑∞
n=1 log(1+zn). The argument

has made no claim that
∑
n log(1 + zn) and log

∏
n(1 + zn) are equal.

Theorem 2.1. Let Ω be domain in C. Let {ϕn} be a sequence of analytic functions
on Ω. Suppose that:

For every compact K in Ω
there is a summable sequence {xn} = {xn(K)} in R≥0 such that
|ϕn(z)| ≤ xn for all n, uniformly over z ∈ K.

Then the product p(z) =
∏∞
n=1(1 + ϕn(z)) is analytic on Ω, and its roots are

precisely the values z ∈ Ω such that 1 + ϕn(z) = 0 for some n.

Indeed, the partial products of p(z) are analytic on Ω. For any compact K in Ω
the bound |ϕn(z)| ≤ xn for all n uniformly over K combines with the argument
just given to establish that p(z) converges uniformly on K. Because p(z) on Ω has
analytic partial products and converges uniformly on compacta it is analytic, by the
Weierstrass theorem. For any z ∈ K such that 1+ϕn(z) 6= 0 for all n, the argument
just given, with {ϕn(z)} in place of {zn}, establishes that

∏∞
n=1(1 + ϕn(z)) 6= 0.

Example 1. Let a sequence {an} of nonzero complex numbers be given such
that

lim
n→∞

|an| =∞.

Let

ϕn(z) = En(z/an)− 1 for each n.

Given any compact K in C, there exists no ∈ Z≥0 such that |z/an| ≤ 1/2 for
all n ≥ no, uniformly over z ∈ K. Let

xn =

{
supz∈K |ϕn(z)| for n < no

(e− 1)/2n for n ≥ no.

Thus, using (1) from the end of the previous section,

|ϕn(z)| = |En(z/an)− 1| ≤ 2(e− 1)|z/an|n+1 ≤ xn for all n ≥ no and z ∈ K,

and certainly |ϕn(z)| ≤ xn for all n < no and z ∈ K. Because {xn} is summable,
this shows that the product

∏∞
n=1En(z/an) is entire with roots {an}.
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Example 2. Let a sequence {an} of nonzero complex numbers be given such
that

∞∑
n=1

|an|−k−1 converges for some nonnegative integer k.

This is a stronger hypothesis than in the previous example. Let

ϕn(z) = Ek(z/an)− 1 for each n,

here with Ek rather than En as in the previous example. Given any compact K
in C, there exists c > 0 such that 2(e− 1)|z|k+1 ≤ c for all z ∈ K, and there exists
no ∈ Z≥0 such that |z/an| ≤ 1/2 for all n ≥ no. Let

xn =

{
supz∈K |ϕn(z)| for n < no

c/|an|k+1 for n ≥ no.

Thus, again using (1),

|ϕn(z)| = |Ek(z/an)− 1| ≤ 2(e− 1)|z/an|k+1 ≤ xn for all n ≥ no and z ∈ K,

and certainly |ϕn(z)| ≤ xn for all n < no and z ∈ K. Because {xn} is summable,
this shows that the product

∏∞
n=1Ek(z/an) is entire with roots {an}. Especially,

if

∞∑
n=1

1/|an| converges then

∞∏
n=1

(1− z/an) is entire with roots {an},

if

∞∑
n=1

1/|an|2 converges then

∞∏
n=1

(1− z/an)ez/an is entire with roots {an}.

Example 3. (The Euler–Riemann zeta function; this example is not necessary
for the present writeup.) Let Ω be the right half plane Re(s) > 1; the variable
name s rather than z is standard in this context. Let

ϕn(s) =

{
(1− p−s)−1 − 1 = (1− p−s)−1p−s if n is a prime p

0 otherwise.

Let K be a compact subset of Ω. There exists some σ > 1 such that Re(s) ≥ σ
on K. Let

{xn} = {2n−σ}.

For all n ≥ 1 and s ∈ K, noting that |1−p−s| ≥ 1−|p−s| = 1−p−σ ≥ 1−2−1 = 1/2
and so |(1− p−s)−1| ≤ 2,

|ϕn(s)| =

{
|(1− p−s)−1p−s| ≤ 2p−σ = xn if n is a prime p

0 ≤ xn otherwise.

Because {xn} is summable, this shows that the product expression
∏
p(1− p−s)−1

of the Euler–Riemann zeta function ζ(s) is analytic and never zero on Re(s) > 1,
with no reference to it equaling the sum

∑∞
n=1 n

−s.
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3. A non-vanishing analytic function is an exponential

We show: If Ω is a simply connected region, and if f : Ω −→ C is analytic and
never vanishes, then f takes the form eg for some analytic g on Ω.

The argument is constructive. Let a be a point of Ω, and take any value
of log(f(a)). Introduce

g(z) = log(f(a)) +

∫ z

ζ=a

f ′(ζ) dζ

f(ζ)
,

well defined because Ω is simply connected. Then g′(z) = f ′(z)/f(z), and so(
f(z)e−g(z)

)′
= (f ′(z)− f(z) · f ′(z)/f(z))e−g(z) = 0.

Also f(a)e−g(a) = 1, and therefore f = eg.
Especially, if the product p(z) = zm

∏
nEkn(z/an) is entire and has the same

roots as f(z), then f(z) = eg(z)p(z) for some entire g.

4. Weierstrass product

Let f be nonzero entire and have nonzero roots {an}. These roots satisfy the
condition limn |an| = ∞, and so the first example at the end of section 2 shows
that the product p(z) = zm

∏∞
n=1En(z/an) converges to an entire function having

the same roots as f . Section 3 therefore gives the Weierstrass factorization of f ,

f(z) = eg(z)zm
∞∏
n=1

En(z/an).

Here the convergence factor of En gets longer as n grows, and all that we know
about g is that it is entire.

Part 2. Hadamard Factorization of a Finite-Order Entire Function

Let f be a nonzero entire function of finite order at most ρ > 0, meaning that
for some positive constants A and B it satisfies a growth bound

|f(z)| ≤ AeB|z|
ρ

for all z.

Here the condition for all z can be replaced by for all z such that |z| > R for some R.
The actual order of f is the infimum of all such ρ; for example, if |f(z)| ≤ Ae|z| ln |z|
but |f(z)| � Ae|z|, or if |f(z)| ≤ p(|z|)e|z| for some polynomial p but |f(z)| � Ae|z|,
then still f has order 1. If f has finite order ρf and similarly for g then fg has
finite order max{ρf , ρg}.

Let f have order m ∈ Z≥0 at 0. Let {an} be the nonzero roots of f , with
multiplicity, so that |an| → ∞. For any r ≥ 0, let n(r) = nf (r) denote the number
of nonzero roots an of f such that |an| < r. The terminology f , ρ, m, {an}, n is in
effect for the rest of this writeup. We note that if f is entire with a root of order m
at 0, then f has order at most ρ if and only if f/zm has order at most ρ.

5. Sparseness of roots: statement

To prepare for Hadamard’s factorization theorem, our first main goal is as follows.

Theorem 5.1. Let f , ρ, {an}, and n be as just above. Then

(1) n(r) ≤ C|r|ρ for all large enough r.
(2)

∑∞
n=1 |an|−s converges for all s > ρ.



THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN ENTIRE FUNCTION 7

The main result needed to prove the theorem is a variant of Jensen’s formula,
to be established next.

6. Jensen’s formula

For R > 0 and ϕ analytic on the closed complex ball BR, where ϕ(0) 6= 0
and ϕ 6= 0 on the boundary circle CR, letting the finitely many roots of ϕ be
denoted {an} with repetition for multiplicity,

(J1) ln |ϕ(0)| =
∑
n

ln
|an|
R

+
1

2π

∫ 2π

θ=0

ln |ϕ(Reiθ)|dθ.

The proof begins with two reductions:

• The formula for general R follows from the formula for R = 1.
• The formula for a product ϕ1ϕ2 follows from the formula for ϕ1 and for ϕ2.
• The decomposition ϕ(z) = ϕo(z)

∏
n(z − an), where ϕo(z) is the analytic

extension of ϕ(z)/
∏
n(z− an), reduces the formula for R = 1 to two cases,

where ϕ has no roots and where ϕ(z) = z − a1.

If ϕ on B1 has no roots then it takes the form ϕ = eg, as discussed above. Let
g = u+ iv with u and v harmonic conjugates, so that |ϕ| = eu and thus ln |ϕ| = u.
The mean value property of harmonic functions gives

ln |ϕ(0)| = u(0) =
1

2π

∫ 2π

θ=0

u(eiθ) dθ =
1

2π

∫ 2π

θ=0

ln |ϕ(eiθ)|dθ.

If ϕ(z) = z − a1 with |a1| < 1 then the desired formula reduces to∫ 2π

θ=0

ln |eiθ − a1|dθ = 0.

Because ln |eiθ − a1| = ln |1 − e−iθa1|, and then we may replace θ by −θ in the
integral, this is ∫ 2π

θ=0

ln |1− a1e−iθ|dθ = 0.

Similarly to the first case, the function f(z) = 1 − a1z takes the form eg on B1,
where g = u+ iv, and so again the integral is a mean value integral for u. But this
time u(0) = 0 because ϕ(0) = 1, and so the integral is 0 as desired.

A variant of Jensen’s formula is as follows.

(J2) ln |ϕ(0)| = −
∫ R

x=0

nϕ(x)
dx

x
+

1

2π

∫ 2π

θ=0

ln |ϕ(Reiθ)|dθ.

This follows from Jensen’s formula (J1) if we can establish the equality

−
∫ R

x=0

n(x)
dx

x
=
∑
n

ln
|an|
R

,

in which n = nϕ. This equality reduces to the case R = 1. Define ηn(x) to be 1 if
x > |an| and 0 otherwise, so that n(x) =

∑
n ηn(x), and compute,

−
∫ 1

x=0

n(x)
dx

x
= −

∑
n

∫ 1

x=0

ηn(x)
dx

x
= −

∑
n

∫ 1

x=|an|

dx

x
=
∑
n

ln |an|.
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7. Sparseness of roots: proof

We prove part (1) of Theorem 5.1. Partially reiterating the theorem’s hypotheses,
the nonzero entire function f has finite order at most ρ and root-counting function n,
and we want to show that

n(r) ≤ Crρ for some C ∈ R>0 and all large enough r.

It suffices to prove this in the case f(0) 6= 0. For any r ∈ R>0, let R = 2r, so that∫ R
r

dx/x = ln 2. Then, using the variant Jensen’s formula (J2) for the last step in
the next computation,

n(r) ln 2 = n(r)

∫ R

r

dx

x
≤
∫ R

0

n(x)
dx

x
=

1

2π

∫ 2π

θ=0

ln |f(Reiθ)|dθ − ln |f(0)|.

Consequently,

n(r) ≤ C1r
ρ + C2 for some C1 ∈ R>0 and C2 ∈ R, for all r ∈ R>0,

and the result follows.

We prove part (2) of Theorem 5.1. Recall that the nonzero roots of f are {an}.
We show that

∑
n |an|−s converges if s > ρ. Indeed, we now have n(r) ≤ Crρ for

all r ≥ 2jo for some nonnegative integer jo. Compute,∑
|an|≥2jo

|an|−s =

∞∑
j=jo

∑
2j≤|an|<2j+1

|an|−s ≤
∞∑
j=jo

n(2j+1)2−js ≤ C
∞∑
j=jo

2(j+1)ρ−js.

The last sum is 2ρ
∑∞
j=jo

(2ρ−s)j , which converges because s > ρ.

8. Hadamard product, part 1

Let f be nonzero entire of finite order at most ρ > 0. Consider the nonnegative
integer

k = bρc,
so that k ≤ ρ < k + 1. As just shown, the nonzero roots {an} are such that∑∞
n=1 |an|−k−1 converges, and so the second example at the end of section 2 shows

that the product zm
∏∞
n=1Ek(z/an) converges to an entire function having the

same roots as f . Section 3 therefore gives the Hadamard factorization of f ,

f(z) = eg(z)zm
∞∏
n=1

Ek(z/an).

Here all the terms Ek(z/an) have convergence factors of the same length. The
remaining work is to analyze g(z). This is more technical.

9. Lower bound

Freely ignoring any root of f at 0, to show that g is a low degree polynomial
we must bound the quotient f(z)/

∏∞
n=1Ek(z/an) from above, and this requires

bounding the product
∏∞
n=1Ek(z/an) from below.

Again with f having finite order at most ρ and with k = bρc, consider any s
such that ρ < s < k + 1. Thus s > k. Consider any z ∈ C. We want to show that
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subject to a condition on z to be specified,
∏∞
n=1Ek(z/an) is bounded from below

as follows, ∣∣∣∣∣
∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s .
For the infinitely many values n such that |z/an| ≤ 1/2, we have shown in sec-

tion 1 that Ek(z/an) = ew where w = −
∑
j≥k+1(z/an)j/j and so |w| ≤ 2|z/an|k+1.

Because |ew| ≥ e−|w|,

|Ek(z/an)| ≥ e−2|z/an|
k+1

= e−2|z/an|
k+1−s|z/an|s ≥ e−(1/2)

k−s|z|s/|an|s .

Thus, because
∑∞
n=1 |an|−s converges,∣∣∣∣∣∣

∏
n:|z/an|≤1/2

Ek(z/an)

∣∣∣∣∣∣ ≥ e−c|z|s ,
with c = 2s−k

∑∞
n=1 |an|−s.

For the finite many values n such that |z/an| > 1/2,

|Ek(z/an)| = |1− z/an| |e
∑k
j=1(z/an)

j/j |,

and, again because |ew| ≥ e−|w|, and noting that |2z/an| ≥ 1, the exponential term
satisfies

|e
∑k
j=1(z/an)

j/j | ≥ e−
∑k
j=1 |2z/an|

j/(2jj)| ≥ e−c|z|
k

≥ e−c|z|
s

,

with c = k2k/ak1 . So in order to show the condition |
∏∞
n=1Ek(z/an)| ≥ e−c|z|

s

,
only the non-exponential terms remain, and we need to show that∏

n:|z/an|>1/2

|1− z/an| ≥ e−c|z|
s

.

However, this is not guaranteed until we add a condition on z. For each positive
integer n, let Bn denote the open ball about an of radius |an|−k−1. We stipulate
that z lie outside

⋃
nBn. For such z,

|1− z/an| = |z − an|/|an| ≥ |an|−k−2 ≥ (2|z|)−k−2.

Take ε > 0 such that s− ε > ρ, and thus n(2|z|) ≤ c|z|s−ε for large z. Thus,∏
n:|z/an|>1/2

|1− z/an| ≥ (2|z|)−(k+2)n(2|z|) ≥ (2|z|)−c|z|
s−ε

,

and the desired result follows,∏
n:|z/an|>1/2

|1− z/an| ≥ e−c|z|
s−ε ln(2|z|) ≥ e−c|z|

s

.

For each positive integer n, again let Bn denote the open ball about an of ra-
dius |an|−k−1, let An denote the open annulus generated by rotating Bn around 0,
and let In denote the intersection of An with R>0. For all large integers N , the
interval [N,N + 1) contains a point r disjoint from

⋃
n In, and so the circle Cr is

disjoint from
⋃
nAn, therefore disjoint from

⋃
nBn. Thus there is a sequence of

positive values r that goes to ∞ such that each circle Cr is disjoint from
⋃
nBn.
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10. An entire function with polynomial-growth real part is a
polynomial

We show: Let g = u + iv be entire and satisfy u(reiθ) ≤ Crs for a sequence of
positive values r that goes to ∞, with s ≥ 0. Then g is a polynomial of degree at
most s.

Because u is bounded only from one side, as compared to a bound on |u|, much
less on |g|, the proof is more than simply Cauchy’s bound. Take any r as just
described and any integer n > s. Cauchy’s formula gives

g(n)(0)

n!
=

1

2πi

∫ 2π

θ=0

g(reiθ)

(reiθ)n+1
d(reiθ),

which is to say,

g(n)(0)

n!
=

1

2πrn

∫ 2π

θ=0

g(reiθ)e−inθ dθ.

Also, Cauchy’s theorem gives
∫ 2π

θ=0
g(reiθ)ei(n−1)θ d(reiθ) = 0, and it follows that∫ 2π

θ=0
g(reiθ)einθ dθ = 0, from which by complex conjugation,

0 =
1

2πrn

∫ 2π

θ=0

g(reiθ)e−inθ dθ.

The previous two displayed equations combine to give, recalling that g = u + iv
and so g + g = 2u,

g(n)(0)

n!
=

1

πrn

∫ 2π

θ=0

u(reiθ)e−inθ dθ,

or, recalling that u(reiθ) ≤ Crs and noting that because Crs is independent of θ

and
∫ 2π

θ=0
e−inθ dθ = 0,

−g
(n)(0)

n!
=

1

πrn

∫ 2π

θ=0

(Crs − u(reiθ))e−inθ dθ,

from which, because Crs − u(reiθ) ≥ 0 for all θ,

|g(n)(0)|
n!

≤ 1

πrn

∫ 2π

θ=0

(Crs − u(reiθ)) dθ = 2Crs−n − 2u(0)r−n.

Let r grow to show that g(n)(0) = 0. Thus the entire function

g(z) =

∞∑
n=0

g(n)(0)

n!
zn for all z ∈ C

is a polynomial of degree at most s, as claimed.

11. Hadamard product, part 2

Our nonzero entire function f has finite order at most ρ, has a root of orderm ≥ 0
at 0, and has nonzero roots {an}. As before, let

k = bρc,

and consider any s such that

ρ < s < k + 1.
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Already we have

f(z) = eg(z)zm
∞∏
n=1

Ek(z/an).

Now we show that g is a polynomial of degree at most k.
For a sequence of positive values r that goes to ∞, we have∣∣∣∣∣

∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s if |z| = r,

from which certainly ∣∣∣∣∣zm
∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s if |z| = r.

Consequently, with g = u+ iv, because also |f(z)| ≤ AeB|z|ρ ,

eu(z) = |eg(z)| ≤ AeB|z|
ρ+c|z|s ≤ eC|z|

s

if |z| = r,

which is to say,

u(reiθ) ≤ Crs.
As just shown, g(z) is a polynomial of degree at most s, hence degree at most bsc,
which is to say degree at most k.

Part 3. Examples

12. The Euler–Riemann zeta function

We establish Hadamard’s product formula

(s− 1)ζ(s) = ea+bs
∏
n≥1

(
1 +

s

2n

)
e−s/2n

∏
ρ

(
1− s

ρ

)
es/ρ, s ∈ C.

Here ρ runs through the nontrivial zeros of the zeta function, those lying in the
critical strip 0 < Re(s) < 1. Although the values of a and b aren’t particularly
important, they are a = − log 2 and b = ζ ′(0)/ζ(0)− 1 = log 2π − 1.

The function

Zentire(s) = s(1− s)π−s/2Γ(s/2)ζ(s), s ∈ C

extends from an analytic function on the right half plane Re(s) > 1 to an entire
function, and the extension is symmetric about the vertical line Re(s) = 1/2, i.e.,
it is invariant under the replacing s by 1− s.

Let s = σ + it. For σ ≥ 1/2, we have upper bounds of the four constituents s,
π−s/2, Γ(s), and (1− s)ζ(s) of Zentire(s), as follows:

• |s| ≤ e|s| for large s.
• |π−s/2| = π−σ/2 ≤ π−1/4.
• |Γ(s/2)| ≤ Γ(σ/2), and by Stirling’s formula this is asymptotically at most
Aeσ lnσ, in turn at most Ae|s| ln |s|.
• Some analysis shows that after extending ζ(s) − 1/(s − 1) leftward from
σ > 1 to σ > 0, we have |ζ(s)− 1/(s− 1)| ≤ ζ(3/2)|s| for σ ≥ 1/2, and so
|(s−1)ζ(s)| ≤ 1 + ζ(3/2)|s(s−1)| ≤ 1 + ζ(3/2)|s|(|s|+ 1) for σ ≥ 1/2; from
this, certainly |(1− s)ζ(s)| ≤ e|s| for large s with Re(s) ≥ 1/2.
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Altogether these give the upper bound

|Zentire(s)| ≤ AeB|s| ln |s|, Re(s) ≥ 1/2.

And because |1− s| ∼ |s|, the symmetry of Zentire(s) gives

|Zentire(s)| ≤ AeB|s| ln |s|, Re(s) < 1/2.

Altogether Zentire(s) has order at most 1, and therefore it has a Hadamard product
expansion

s(1− s)π−s/2Γ(s/2)ζ(s) = ea+bs
∏
ρ

(
1− s

ρ

)
es/ρ, s ∈ C.

But also the reciprocal gamma function has a well known product expansion, in
which γ denotes the Euler-Mascheroni constant,

1/Γ(s) = eγss
∏
n≥1

(
1 +

s

n

)
e−s/n, s ∈ C.

Such a product expression, though with ea
′+b′s rather than eγs, follows from the

estimate |1/Γ(s)| ≤ AeB|s| ln |s| (see Stein and Shakarchi, Theorem 6.1.6, page 165).
Divide the penultimate display by −sπ−s/2Γ(s/2) and use the previous display to
get, with new a and b, the claimed result,

(s− 1)ζ(s) = ea+bs
∏
n≥1

(
1 +

s

2n

)
e−s/2n

∏
ρ

(
1− s

ρ

)
es/ρ, s ∈ C.

13. The sine function

One readily shows that the sine function has order 1, and so for some b ∈ C,

sin(πz) = ebzπz
∏
n≥1

(
1− z2

n2

)
.

We show that b = 0. Indeed, write the previous display as

sin(πz)

πz
= ebz

∏
n≥1

(
1− z2

n2

)
,

with the left side continued analytically to 1 at z = 0. This says that for small z,

1 + o(z) =
(
1 + bz + o(z)

)(
1 + o(z)

)
= 1 + bz + o(z),

from which b = 0. As an exercise, tracking z2-terms as well shows that ζ(2) = π2/6.
In fact, an elementary formula for ζ(2d) where d = 1, 2, 3, . . . can be extracted
from the Taylor series expansion and the product expansion of sin(πz)/(πz). This
is unsurprising in light of a well known method to obtain ζ(2d) from the sum
expansion of π cot(πz), the logarithmic derivative of sin(πz).


