SKETCH OF FUNCTION THEORY ON COMPLEX TORI

In class we have shown that if \(\Lambda \subset \mathbb{C} \) is a lattice and
\[
f : \mathbb{C}/\Lambda \to \hat{\mathbb{C}}
\]
is a nonzero meromorphic function then three necessary conditions follow from short contour integral calculations:

1. \(\sum_{z \in \mathbb{C}/\Lambda} \text{ord}_z(f) = 0 \). That is, the net order of vanishing of \(f \) is zero. (Indeed, this holds with any compact Riemann surface in place of \(\mathbb{C}/\Lambda \): triangulate the surface so that the triangle-sides avoid the finitely many zeros and poles of \(f \); then the sum of the integrals of \(f'(z)/f(z) \) around all the triangles is zero by cancellation, but also it is the net order of vanishing.)

2. \(\sum_{z \in \mathbb{C}/\Lambda} \text{ord}_z(f) \cdot z = 0 \) in \(\mathbb{C}/\Lambda \). That is, the sum of the points where \(f \) has zeros and poles, each such point \(z \) summed as many times as \(f \) vanishes there, is zero under the group law of \(\mathbb{C}/\Lambda \).

3. \(\sum_{z \in \mathbb{C}/\Lambda} \text{res}_z(f) = 0 \). That is, the sum of the residues of \(f \) is zero. This condition rules out the possibility of a meromorphic function on \(\mathbb{C}/\Lambda \) having only one simple pole.

These conditions are also sufficient. Specifically, after introducing some building-block functions in the next section, this writeup constructs a \(\Lambda \)-periodic function with any feasible prescribed vanishing behavior, and also this writeup constructs a \(\Lambda \)-periodic function with any feasible prescribed principal parts.

1. Weierstrass’s \(\sigma \)-function, \(\zeta \)-function, and \(\wp \)-function

The Weierstrass \(\sigma \)-function,
\[
\sigma : \mathbb{C} \to \mathbb{C},
\]
is
\[
\sigma(z) = z \prod_{\omega \in \Lambda}' \left(1 - \frac{z}{\omega}\right) e^{z/\omega + \frac{1}{2}(z/\omega)^2}.
\]
Since this function has simple zeros at the two-dimensional lattice \(\Lambda \subset \mathbb{C} \) just as the function \(s(x) = \sin \pi x \) has simple zeros at the one-dimensional lattice \(\mathbb{Z} \subset \mathbb{R} \), it is named \(\sigma \) by analogy.

(The exponential factors are needed to make the infinite product converge. A full explanation of this would take us too far afield, but the basic idea is that for the product to converge to a nonzero value, the value needs to be the exponential of the sum of the logarithms of the multiplicands. The relevant question becomes whether the sum
\[
\log z + \sum_{\omega \in \Lambda}' \log \left(1 - \frac{z}{\omega}\right) e^{z/\omega + \frac{1}{2}(z/\omega)^2}
\]
converges absolutely and uniformly on compacta. And it does, because for small enough \(|z|\) the logarithm of the product is the sum of the logarithms,
\[
\log \left((1 - z/\omega) e^{z/\omega + \frac{1}{2}(z/\omega)^2}\right) = \log(1 - z/\omega) + z/\omega + \frac{1}{2}(z/\omega)^2,
\]
and the power series expansion of the logarithm is
\[
\log(1 - z/w) = -z/w - \frac{1}{2}(z/w)^2 - \frac{1}{3}(z/w)^3 - \cdots.
\]
Thus the summand is \(O((z/w)^3)\). As discussed in class, this is small enough to make the sum converge nicely. Consequently the infinite product \(\sigma(z)\) converges to a holomorphic function on \(\mathbb{C}\). The theory of infinite products is covered in many texts. See, for example, \textit{Complex Functions} by Jones and Singerman.)

The \textit{Weierstrass} \(\zeta\)-function,

\[
\zeta : \mathbb{C} \longrightarrow \hat{\mathbb{C}},
\]

emphatically is \textit{not} the Euler–Riemann \(\zeta\)-function, but instead is

\[
\zeta(z) = \log(\sigma(z))' = \frac{\sigma'(z)}{\sigma(z)} = \frac{1}{z} + \sum_{\omega \in \Lambda} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right).
\]

This function has simple poles with residue 1 at the lattice points, analogously to the logarithmic derivative \(\pi \cot \pi x\) of \(\sin \pi x\), but it isn’t quite periodic with respect to \(\Lambda\). However, let \(\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}\) where \(\omega_1/\omega_2 \in \mathcal{H}\). Since the Weierstrass \(\wp\)-function \(\wp = -\zeta'\) is \(\Lambda\)-periodic, the quantities

\[
\eta_j = \zeta(z + \omega_j) - \zeta(z), \quad j = 1, 2
\]

are independent of \(z\), i.e., they are lattice constants. Now we have the transformation laws

\[
\zeta(z + \omega_j) = \zeta(z) + \eta_j, \quad j = 1, 2
\]

Consequently,

\[
\log \left(\frac{\sigma(z + \omega_j)}{\sigma(z)} \right)' = \zeta(z + \omega_j) - \zeta(z) = \eta_j, \quad j = 1, 2,
\]

and thus for some constant \(c\),

\[
\log \left(\frac{\sigma(z + \omega_j)}{\sigma(z)} \right) = \eta_j z + c, \quad j = 1, 2.
\]

To determine \(c\), note that the definition of \(\sigma\) shows that \(\sigma\) is odd. Therefore, setting \(z = -\omega_j/2\) gives

\[
\frac{i\pi}{2} = \log \left(\frac{\sigma(\omega_j/2)}{\sigma(-\omega_j/2)} \right) = -\eta_j \omega_j/2 + c.
\]

And so

\[
\sigma(z + \omega_j) = -\sigma(z)e^{\eta_j(z+\omega_j/2)}, \quad j = 1, 2
\]

Incidentally, the lattice constants satisfy the \textit{Legendre relation},

\[
\eta_2 \omega_1 - \eta_1 \omega_2 = 2\pi i.
\]
2. Constructing a Function Having Specified Vanishing

Now let \(n \) be a positive integer, and consider a set of data

\[
an_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}
\]

where \(a_1 \) through \(a_n \) can contain repeats, as can \(b_1 \) through \(b_n \), but no \(a_i \) and \(b_j \) are equal modulo the lattice \(\Lambda \). Suppose further that

\[
\sum_i a_i - \sum_i b_i \in \Lambda.
\]

We want to define a meromorphic function

\[
f : \mathbb{C}/\Lambda \longrightarrow \hat{\mathbb{C}}
\]

with zeros at the \(a_i \), the degree of each zero being the number of times that the corresponding \(a_i \) repeats, and similarly for poles at the \(b_i \). Such a function will satisfy the first of our three necessary conditions, \(\sum \text{ord}_z(f) = 0 \), and also the second, \(\sum \text{ord}_z(f) \cdot z = 0 \) in \(\mathbb{C}/\Lambda \).

Translating \(b_n \) by some lattice element \(\lambda \in \Lambda \), which has no effect on the coset \(b_n + \Lambda \in \mathbb{C}/\Lambda \), we may assume that in fact

\[
\sum_i a_i - \sum_i b_i = 0.
\]

Now consider the function

\[
f : \mathbb{C} \longrightarrow \hat{\mathbb{C}}, \quad f(z) = \prod_i \frac{\sigma(z - a_i)}{\sigma(z - b_i)}.
\]

This function is meromorphic, and it has the specified zeros and poles. The question is whether it is \(\Lambda \)-periodic. So compute for \(j = 1, 2 \) that

\[
f(z + \omega_j) = \prod_i \frac{\sigma(z - a_i + \omega_j)}{\sigma(z - b_i + \omega_j)}
\]

\[
= (-1)^n \prod_i \sigma(z - a_i) e^{\eta_j (z - a_i + \omega_j/2)}
\]

\[
= (-1)^n \prod_i \sigma(z - b_i) e^{\eta_j (z - b_i + \omega_j/2)}
\]

\[
= \prod_i \sigma(z - a_i) \prod_i \sigma(z - b_i) e^{\eta_j (b_i - a_i)}
\]

\[
= \prod_i \sigma(z - a_i) e^{\eta_j \sum (b_i - a_i)}
\]

\[
= \prod_i \sigma(z - a_i) e^{\eta_j \sum (b_i - a_i)}
\]

\[
= \prod_i \sigma(z - a_i)
\]

Thus \(f \) is indeed \(\Lambda \)-periodic, giving a meromorphic function on the torus with the specified zeros and poles.

3. Constructing a Function Having Specified Principal Parts

Recall that the Weierstrass \(\wp \)-function,

\[
\wp : \mathbb{C} \longrightarrow \hat{\mathbb{C}}
\]
is
\[\wp(z) = -\zeta'(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda} \left(\frac{1}{(z - \omega)^2} + \frac{1}{\omega^2} \right). \]

Define also for each integer \(k \geq 3 \),
\[F_k : \mathbb{C} \rightarrow \hat{\mathbb{C}}, \quad F_k(z) = \sum_{\omega \in \Lambda} \frac{1}{(z - \omega)^k}. \]
(Thus \(F_k = (-1)^k \wp^{(k-2)}/(k-1)! \).) Recall that the Weierstrass \(\zeta \)-function has simple poles with residue 1 at the lattice points \(\omega \in \Lambda \). More specifically, its Laurent series at 0 is
\[\zeta(z) = \frac{1}{z} + \text{holomorphic in } z. \]
Similarly, the Weierstrass \(\wp \)-function Laurent series has a double pole at 0 and Laurent series
\[\wp(z) = \frac{1}{z^2} + \text{holomorphic in } z, \]
while for \(k \geq 3 \) the functions \(F_k \) have \(k \)-fold poles at 0 and Laurent series
\[F_k(z) = \frac{1}{z^k} + \text{holomorphic in } z. \]

Now let \(z_1 \) through \(z_m \) be distinct modulo \(\Lambda \), and consider a set of principal part data,
\[P_1(z) = \frac{c_{1,1}}{z - z_1} + \frac{c_{1,2}}{(z - z_1)^2} + \cdots + \frac{c_{1,n_1}}{(z - z_1)^{n_1}}, \]
\[P_2(z) = \frac{c_{2,1}}{z - z_2} + \frac{c_{2,2}}{(z - z_2)^2} + \cdots + \frac{c_{2,n_2}}{(z - z_2)^{n_2}}, \]
\[\vdots \]
\[P_m(z) = \frac{c_{m,1}}{z - z_m} + \frac{c_{m,2}}{(z - z_m)^2} + \cdots + \frac{c_{m,n_m}}{(z - z_m)^{n_m}}, \]
where the coefficients of the negative-first powers sum to zero,
\[c_{1,1} + \cdots + c_{m,1} = 0. \]
These data might describe the principal parts of a meromorphic function on \(\mathbb{C}/\Lambda \) at its poles, since the residues of the putative function sum to zero.

The meromorphic function on \(\mathbb{C} \) with the desired principal parts is
\[f(z) = c_{1,1}\zeta(z - z_1) + c_{1,2}\wp(z - z_1) + \cdots + c_{1,n_1}F_{n_1}(z - z_1) \]
\[+ c_{2,1}\zeta(z - z_2) + c_{2,2}\wp(z - z_2) + \cdots + c_{2,n_2}F_{n_2}(z - z_2) \]
\[\vdots \]
\[+ c_{m,1}\zeta(z - z_m) + c_{m,2}\wp(z - z_m) + \cdots + c_{m,n_m}F_{n_m}(z - z_m). \]
The question is whether \(f \) is \(\Lambda \)-periodic. Since the Weierstrass \(\wp \)-function and its derivatives are \(\Lambda \)-periodic, the question is bears only on the subfunction
\[g(z) = c_{1,1}\zeta(z - z_1) + \cdots + c_{m,1}\zeta(z - z_m) = \sum_{i=1}^{m} c_{i,1}\zeta(z - z_i). \]
Compute for $j = 1, 2$ that
\[g(z + \omega_j) = \sum_{i=1}^{m} c_{i,1} \zeta(z - z_i + \omega_j) = \sum_{i=1}^{m} c_{i,1} (\zeta(z - z_i) + \eta_j) = g(z) + \eta_j \sum_{i=1}^{m} c_{i,1}. \]
And thus $g(z + \omega_j) = g(z)$ because $\sum_{i} c_{i,1} = 0$.