ISOGENY FROM SU(2) TO SO(3)

This writeup constructs a 2-to-1 epimorphism $SU(2) \longrightarrow SO(3)$, quickly demonstrating methods by example without full discussion. In general, a group that doubly covers an orthogonal group is called a *spin group*. See Paul Garrett's writeup

http://www-users.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf

for many more examples.

1. UNITARY GROUP AND ITS LIE ALGEBRA

The unitary group $U(2) \subset GL_2(\mathbb{C})$ is defined by the condition (in which "*" denotes the hermitan operator, i.e., transpose-conjugate)

$$g^*g = 1.$$

Its Lie algebra $\mathfrak{u}(2) \subset M_2(\mathbb{C})$ is defined by the condition

$$e^{\mathbb{R}x} \subset \mathrm{U}(2).$$

The Lie algebra condition that for any $x \in \mathfrak{u}(2)$,

$$1 = (e^{tx})^* e^{tx} = e^{tx^*} e^{tx}, \quad t \in \mathbb{R}$$

differentiates at t = 0 to $0 = x^* + x$; and conversely if $x^* = -x$ then

$$(e^{tx})^* e^{tx} = e^{tx^*} e^{tx} = e^{-tx} e^{tx} = 1, \quad t \in \mathbb{R},$$

and so $x \in \mathfrak{u}(2)$. Thus the Lie algebra consists of the skew hermitian matrices, i.e., the Lie algebra $\mathfrak{u}(2) \subset M_2(\mathbb{C})$ is defined by the condition

$$x^* + x = 0.$$

Here U(2) and u(2) are a real Lie group and Lie algebra notwithstanding their elements having complex entries. Their shared real dimension is 4.

The Lie algebra $\mathfrak{su}(2)$ of the special unitary group SU(2) carries the additional condition that the trace vanishes,

$$\mathfrak{su}(2) = \{ x \in \mathcal{M}_2(\mathbb{C}) : x^* = -x, \text{ tr } x = 0 \}.$$

This reduces its dimension to 3, also the manifold dimension of SU(2). Here the argument is that the condition det $e^{tx} = 1$ is $e^{t \operatorname{tr} x} = 1$, which differentiates at t = 0 to $\operatorname{tr} x = 0$; and conversely if $\operatorname{tr} x = 0$ then det $e^{tx} = e^{t \operatorname{tr} x} = e^0 = 1$.

The $\mathfrak{su}(2)$ conditions $x^* = -x$ and $\operatorname{tr} x = 0$ are preserved under addition, real scaling, and the Lie bracket. For example,

$$(rx)^* = \overline{r} x^* = -r x$$
 for real r ,

and

$$(xy - yx)^* = y^*x^* - x^*y^* = (-y)(-x) - (-x)(-y) = yx - xy = -(xy - yx).$$

2. INNER PRODUCT, INVARIANCE

A real symmetric bilinear inner product on $\mathfrak{su}(2)$ is

$$\langle \cdot, \cdot \rangle : \mathfrak{su}(2) \times \mathfrak{su}(2) \longrightarrow \mathbb{R}, \qquad \langle x, y \rangle = -\frac{1}{2} \operatorname{Re}(\operatorname{tr}(xy)).$$

The group SU(2) acts linearly on the algebra $\mathfrak{su}(2)$ by conjugation,

$$g \cdot x = gxg^{-1},$$

and this action preserves the inner product,

$$\langle g \cdot x, g \cdot y \rangle = \langle x, y \rangle.$$

Indeed, to see that $g \cdot x$ again lies in $\mathfrak{su}(2)$ for all $g \in \mathrm{SU}(2)$ and $x \in \mathfrak{su}(2)$, note that because g and $e^{\mathbb{R}x}$ and g^{-1} lie in $\mathrm{SU}(2)$, also

$$e^{\mathbb{R}gxg^{-1}} = ge^{\mathbb{R}x}g^{-1}$$
 lies in SU(2)

and to see that the action preserves the inner product, compute that

$$\langle g \cdot x, g \cdot y \rangle = -\frac{1}{2} \operatorname{Re}(\operatorname{tr}(gxg^{-1}gyg^{-1})) = -\frac{1}{2} \operatorname{Re}(\operatorname{tr}(xy)) = \langle x, y \rangle.$$

Note that the results in this section rely only on general Lie group and Lie algebra properties, not on any particulars of the specific Lie group SU(2) and Lie algebra $\mathfrak{su}(2)$.

3. Orthonormal Basis

The defining conditions $x^* = -x$ and $\operatorname{tr} x = 0$ say that $\mathfrak{su}(2)$ consists of the matrices

$$x = \begin{bmatrix} i\eta_1 & \xi_2 + i\eta_2 \\ -\xi_2 + i\eta_2 & -i\eta_1 \end{bmatrix}, \quad \eta_1, \xi_2, \eta_2 \in \mathbb{R}.$$

The $\mathfrak{su}(2)$ -basis

$$x_1 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \qquad x_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \qquad x_3 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

is orthonormal under the $\mathfrak{su}(2)$ inner product. For example,

$$\langle x_1, x_1 \rangle = -\frac{1}{2} \operatorname{Re}(\operatorname{tr}\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right)) = 1$$
$$\langle x_2, x_3 \rangle = -\frac{1}{2} \operatorname{Re}(\operatorname{tr}\left(\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \right)) = 0.$$

4. Homomorphism

For each $g \in SU(2)$ there exist nine real constants c_{ij} for i, j = 1, 2, 3 such that

$$g \cdot x_j = \sum_{i=1}^{3} c_{ij} x_i, \quad j = 1, 2, 3.$$

The corresponding 3×3 real matrix of the action of g is

$$A_g = [c_{ij}]_{i,j=1,2,3}.$$

Thus

$$A_g$$
 has *j*th column $\sum_{i=1}^{3} c_{ij} e_i$, $j = 1, 2, 3$.

We show that A_g is orthogonal. Because the \mathbb{R}^3 standard basis (e_1, e_2, e_3) and the $\mathfrak{su}(2)$ basis (x_1, x_2, x_3) are both orthonormal, for any two column indices $j, k \in \{1, 2, 3\}$ the inner product of the *j*th and *k*th columns of A_g is

$$\langle \sum_{i=1}^{3} c_{ij} e_i, \sum_{i=1}^{3} c_{ik} e_i \rangle_{\mathbb{R}^3} = \sum_{i=1}^{3} c_{ij} c_{ik} = \langle \sum_{i=1}^{3} c_{ij} x_i, \sum_{i=1}^{3} c_{ik} x_i \rangle_{\mathfrak{su}(2)}.$$

That is, now denoting the columns c_i and c_k ,

$$\langle c_j, c_k \rangle = \langle g \cdot x_j, g \cdot x_k \rangle_{\mathfrak{su}(2)} = \langle x_j, x_k \rangle_{\mathfrak{su}(2)} = \delta_{jk}$$
 (Kronecker delta).

Thus A_g is orthogonal as claimed. This argument uses only the existence of an orthonormal basis of $\mathfrak{su}(2)$, with no reference to the values of the c_{ij} .

The map $g \mapsto A_g$ is innately a homomorphism, because the action property $(gg') \cdot x = g \cdot (g' \cdot x)$ for $g, g' \in \mathrm{SU}(2)$ and $x \in \mathfrak{su}(2)$ combines with the fact that matrix multiplication is compatible with linear map composition to give $A_{gg'} = A_g A_{g'}$.

5. Homomorphism Formula

Specifically, the action of any group element

$$g = \begin{bmatrix} a & b \\ -\overline{b} & \overline{a} \end{bmatrix} = \begin{bmatrix} \alpha_1 + i\alpha_2 & \beta_1 + i\beta_2 \\ -\beta_1 + i\beta_2 & \alpha_1 - i\alpha_2 \end{bmatrix} \in \mathrm{SU}(2)$$

on the basis elements is a matter of direct computation, albeit a bit tedious,

$$g \cdot x_1 = (\alpha_1^2 + \alpha_2^2 - \beta_1^2 - \beta_2^2)x_1 + 2(\alpha_2\beta_1 + \alpha_1\beta_2)x_2 + 2(\alpha_2\beta_2 - \alpha_1\beta_1)x_3$$

$$g \cdot x_2 = 2(\alpha_2\beta_1 - \alpha_1\beta_2)x_1 + (\alpha_1^2 - \alpha_2^2 + \beta_1^2 - \beta_2^2)x_2 + 2(\alpha_1\alpha_2 + \beta_1\beta_2)x_3$$

$$g \cdot x_3 = 2(\alpha_1\beta_1 + \alpha_2\beta_2)x_1 + 2(-\alpha_1\alpha_2 + \beta_1\beta_2)x_2 + (\alpha_1^2 - \alpha_2^2 - \beta_1^2 + \beta_2^2)x_3.$$

Thus the matrix of the action of g is

$$A_{g} = \begin{bmatrix} \alpha_{1}^{2} + \alpha_{2}^{2} - \beta_{1}^{2} - \beta_{2}^{2} & 2(\alpha_{2}\beta_{1} - \alpha_{1}\beta_{2}) & 2(\alpha_{1}\beta_{1} + \alpha_{2}\beta_{2}) \\ 2(\alpha_{2}\beta_{1} + \alpha_{1}\beta_{2}) & \alpha_{1}^{2} - \alpha_{2}^{2} + \beta_{1}^{2} - \beta_{2}^{2} & 2(-\alpha_{1}\alpha_{2} + \beta_{1}\beta_{2}) \\ 2(\alpha_{2}\beta_{2} - \alpha_{1}\beta_{1}) & 2(\alpha_{1}\alpha_{2} + \beta_{1}\beta_{2}) & \alpha_{1}^{2} - \alpha_{2}^{2} - \beta_{1}^{2} + \beta_{2}^{2} \end{bmatrix} \in \mathcal{O}(3).$$

6. Isogeny

To determine the kernel of the map $g \mapsto A_g$, note that the diagonal conditions

$$\alpha_1^2 + \alpha_2^2 - \beta_1^2 - \beta_2^2 = \alpha_1^2 - \alpha_2^2 + \beta_1^2 - \beta_2^2 = \alpha_1^2 - \alpha_2^2 - \beta_1^2 + \beta_2^2 = 1$$

are $\alpha_1^2 - 1 = \alpha_2^2 = \beta_1^2 = \beta_2^2$. Now the (1,2)-entry condition $\alpha_2\beta_1 - \alpha_1\beta_2 = 0$ is $\pm \beta_2^2 = \pm \sqrt{\beta_2^2 + 1}\beta_2$; if $\beta_2 \neq 0$ then canceling β_2 and then squaring both sides gives the impossible condition $\beta_2^2 = \beta_2^2 + 1$, so $\beta_2 = 0$. This forces $g = \pm 1_2$. Conversely, if $g = \pm 1$ then $A_g = 1$. In sum, the map has kernel is $\pm 1_2$.

Because the manifold dimension 3 of O(3) matches that of the connected group SU(2), the map $g \mapsto A_g$ surjects to the connected component SO(3) of its codomain.

7. GENERALIZATION

Again, for many more examples see the writeup by Paul Garrett mentioned at the beginning of this writeup. Here we note that if a finite-dimensional real Lie group G has Lie algebra \mathfrak{g} , and if \mathfrak{g} carries a symmetric bilinear inner product and has an orthogonal anisotropic basis $\{x_i\}$, so that after permuting and scaling the basis elements,

$$\langle x_i, x_{i'} \rangle = \delta_{ii'} \lambda_i$$
, with $\lambda_1 = \dots = \lambda_p = 1$ and $\lambda_{p-1} = \dots = \lambda_n = -1$,

then we may carry out the same process as above: Let $g \cdot x_j = \sum_{i=1}^n c_{ij} x_i$ for each j, and let $A_g = [c_{ij}] = [c_1 \cdots c_n]$ where the c_j are column vectors. For any column indices j and k (all sums to follow run from 1 to n),

$$\begin{aligned} c_j^{\mathsf{T}} \begin{bmatrix} 1_p & 0\\ 0 & -1_{n-p} \end{bmatrix} c_k &= \begin{bmatrix} c_{1j} & c_{2j} & \dots & c_{nj} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0\\ 0 & \lambda_2 & \dots & 0\\ \vdots & & & \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} c_{1k}\\ \vdots\\ c_{nk} \end{bmatrix} \\ &= \begin{bmatrix} c_{1j}\lambda_1 & c_{2j}\lambda_2 & \dots & c_{nj}\lambda_n \end{bmatrix} \begin{bmatrix} c_{1k}\\ \vdots\\ c_{nk} \end{bmatrix} \\ &= \sum_i c_{ij}c_{ik}\lambda_i \\ &= \sum_i c_{ij}c_{i'k}\delta_{ii'}\lambda_i \\ &= \sum_{i,i'} c_{ij}c_{i'k}\langle x_i, x_{i'} \rangle \\ &= \langle \sum_i c_{ij}x_i, \sum_{i'} c_{i'k}x_{i'} \rangle \\ &= \langle g \cdot x_j, g \cdot x_k \rangle \\ &= \delta_{jk}\lambda_j. \end{aligned}$$

This says that

$$A_g^{\mathsf{T}} \begin{bmatrix} 1_p & 0\\ 0 & -1_{n-p} \end{bmatrix} A_g = \begin{bmatrix} 1_p & 0\\ 0 & -1_{n-p} \end{bmatrix}$$

Thus the map $g \mapsto A_g$ is a homomorphism from G to O(p, n-p). For SU(2) we had n = p = 3. The reader is invited to check that similarly there is a 2-to-1 isogeny from SU(1,1) to SO(2,1).