As of autumn 2019, the second printing should be available. To check whether a copy of the book is the second printing, see if it has the first few additions and corrections to the first printing.

Chapter 4

- Page 149: The proof of Lemma 4.4.4(1) is more tidily concluded by noting that \(hk \) is a twofold product of linear functions and therefore is \(o(h, k) \) by Proposition 4.2.6.
- Page 155, line 9: Change "\(f \cdot a) \)" to "\(f(a) \)."

Chapter 6

- Page 280: A tidier proof of Theorem 6.4.3 is, “Define \(F_2 : [a,b] \rightarrow \mathbb{R} \) by \(F_2(x) = \int_a^x f' \). Then \(F'_2 = F' \) by the preceding theorem, so (Exercise 6.4.3) there exists a constant \(c \) such that \(F_2(x) = F(x) + c \) for all \(x \in [a,b] \). Thus, because \(F_2(a) = 0 \),
 \[
 \int_a^b f' = F_2(b) - F_2(a) = F(b) + c - F(a) - c = F(b) - F(a).
 \]
- Page 282: Replace the paragraph after Corollary 6.4.4 by, “The formula in the corollary is the formula for integration by inverse substitution. To obtain it from (6.4), substitute \(f \cdot (\phi^{-1})' \) for \(f \) in (6.4) to get
 \[
 \int_a^b (f \circ \phi) \cdot ((\phi^{-1})' \circ \phi) \cdot \phi' = \int_{\phi(a)}^{\phi(b)} f \cdot (\phi^{-1})',
 \]
 By the chain rule, \((\phi^{-1})' \circ \phi \cdot \phi' = (\phi^{-1} \circ \phi)' = 1 \), and so we have the result.”
- Page 313, fourth display: "\(R_{\infty} \)" should be "\(\mathbb{R}_{\geq 0} \)."
- Exercise 6.7.15: Add part (d) as follows. “(d) Use various exercises from this section to show that the centroid of the upper half \(n \)-ball has last coordinate
 \[
 \bar{x}_n = \frac{2^{n+1}}{\pi(n+1)} \cdot \frac{(n/2)!^2}{n!},
 \]
 and then use Stirling’s formula to show that asymptotically, as \(n \) grows,
 \[
 \bar{x}_n \sim \sqrt{\frac{2}{\pi n}}.
 \]
 Thus the \(n \)-ball is concentrated ever more toward its center.”
- Section 6.8: This section can be omitted if we strengthen the hypotheses of the change of variable theorem to assume that \(\Phi(K) \) has boundary of volume zero. For all 2-dimensional and 3-dimensional examples in a calculus class, one can see this to be the case.

Chapter 9
● Page 443, line (−4): Change “consisted only in” to “consisted only of”.

● Page 459: A better end to the proof of Theorem 9.10.1 is

\[
\int \Phi f \, dx_I = \int_D (f \circ \Phi) \det \Phi' \\
= \int_{\Delta^D} (f \circ \Phi) \det \Phi' \, du_1 \wedge \cdots \wedge du_k \\
= \int_{\Delta^D} \Phi^* f \cdot \Phi^* dx_I \\
= \int_{\Delta^D} \Phi^* (f \, dx_I)
\]

by definition, as in (9.14)
by Exercise 9.5.4
by Theorem 9.9.3
by Theorem 9.9.4(2).