LARGE PRIME NUMBERS

1. FERMAT PSEUDOPRIMES

Fermat’s Little Theorem states that for any positive integer n,
if nis prime then 8" %n=>5b forb=1,...,n—1.
In the other direction, all we can say is that
ifb"%n=>bforb=1,...,n—1 then n might be prime.

If " %mn = b where b € {1,...,n — 1} then n is called a Fermat pseudoprime
base b.

There are 669 primes under 5000, but only five values of n (561, 1105, 1729, 2465,
and 2821) that are Fermat pseudoprimes base b for b = 2, 3,5 without being prime.
This is a false positive rate of less than 1%. The false positive rate under 500,000
just for b=2,3 is 0.118%.

On the other hand, the bad news is that checking more bases b doesn’t reduce the
false positive rate much further. There are infinitely many Carmichael numbers,
numbers n that are Fermat pseudoprimes base b for all b € {1,...,n — 1} but are
not prime.

In sum, Fermat pseudoprimes are reasonable candidates to be prime.

2. STRONG PSEUDOPRIMES

The Miller—Rabin test on a positive integer n and a positive test base b
in {1,...,n — 1} proceeds as follows.

Factor n — 1 as 2°m where m is odd.

Replace b by b™ % n.

If b = 1 then return the result that n could be prime, and terminate.

Do the following s times: If b = n — 1 then return the result that n could
be prime, and terminate; otherwise replace b by b %n.

If the algorithm has not yet terminated then return the result that n is
composite, and terminate.

(Slight speedups here: (1) If the same n is to be tested with various bases b then
there is no need to factor n — 1 = 2°m each time; (2) there is no need to com-
pute b2 % n on the sth time through the step in the fourth bullet.)

A positive integer n that passes the Miller—Rabin test for some b is a strong
pseudoprime base b.

For any n, at least 3/4 of the b-values in {1,...,n—1} have the property that if n
is a strong pseudoprime base b then n is really prime. But according to the theory,
up to 1/4 of the b-values have the property that n could be a strong pseudoprime
base b but not be prime. In practice, the percentage of such b’s is much lower. For
n up to 500,000, if n is a strong pseudoprime base 2 and base 3 then n is prime.
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3. GENERATING CANDIDATE LARGE PRIMES

Given n, a simple approach to finding a candidate prime above 2n is as follows.

Take the first of N =2n+1, N =2n+3, N =2n+5, ...to pass the following test.

(1) Try trial division for a few small primes. If N passes, continue.

(2) Check whether N is a Fermat pseudoprime base 2. If N passes, continue.

(3) Check whether N is a strong pseudoprime base b as b runs through the first

20 primes.

Any N that passes the test is extremely likely to be prime. And such an N should
appear quickly. Indeed, using only the first three primes in step (3) of the previous
test finds the following correct candidate primes:

The first candidate prime after 10°©  is 10°° + 151.
The first candidate prime after 10'° is 1000 4+ 267.
The first candidate prime after 102°0 is 10290 4 357.
The first candidate prime after 1030 is 103°0 4 331.
The first candidate prime after 100 is 10000 4 453,

4. CERTIFIABLE LARGE PRIMES

The Lucas—Pocklington—Lehmer Criterion is as follows. Suppose that N =
p-U+ 1 where p is prime and p > U. Suppose also that there is a base b such that
WN"L% N =1 but ged(bY —1,N) = 1. Then N is prime.

The proof will be given in the next section. It is just Fermat’s Little Theorem
and some other basic number theory.

As an example of using the result, start with

p = 1000003.

This is small enough that its primality is easily verified by trial division. A candidate
prime above 1000 - p of the form p-U + 1 is

N =1032-p+ 1 = 1032003097.

And 2V % N =1 and ged(2'9%2 — 1, N) = 1, so the LPL Criterion is satisfied,
and N is prime. Rename it p.
A candidate prime above 10° - p of the form p- U + 1 is

N =p- (10° + 146) + 1 = 1032003247672452163.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 10'7 - p of the form p- U + 1 is

N =p- (10" 4 24) + 1 = 103200324767245241068077944138851913.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 1034 - p of the form p- U + 1 is

N = p- (103 4 224) 4+ 1 =10320032476724524106807794413885422
46872747862933999249459487102828513.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
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A candidate prime above 1090 . p of the form p- U + 1 is
N=p- (1060 + 1362) + 1 =10320032476724524106807794413885422
468727478629339992494608926912518428
801833472215991711945402406825893161
06977763821434052434707.

Again b = 2 works in the LPL Criterion, so IV is prime. Again rename it p.
A candidate prime above 10'?° - p of the form p- U + 1 is
N =p-(10"° +796) + 1 =10320032476724524106807794413885422
468727478629339992494608926912518428
801833472215991711945402406825893161
069777638222555270198542721189019004
353452796285107072988954634025708705
822364669326259443883929402708540315
83341095621154300001861505738026773.

Again b = 2 works in the LPL Criterion, so N is prime.

5. PROOF OF THE LUCAS-POCKLINGTON-LEHMER CRITERION

Recall the Lucas—Pocklington-Lehmer Criterion: Suppose that N = p - U +
1 where p is prime and p > U. Suppose also that there is a base b such that
WNL% N =1 but ged(bY — 1, N) = 1. Then N is prime.

The proof begins with an observation that goes back to Fermat and Euler:
Fermat—Euler Criterion. Let p be prime. Let N be an integer such that

N%p=1.
If there is an integer b such that
WT%N=1 and gedd@™¥=D/P _1, N)=1

then
q%p=1 for each prime divisor q of N.

To prove the Fermat—Euler criterion, let ¢ be any prime divisor of N. Since
bN—1 % N =1, it follows that
VN1 % q = 1.
Let ¢ be the smallest positive integer such that o' % ¢ = 1. Thus ¢t | N — 1, and also
t | ¢ — 1 by Fermat’s Little Theorem. On the other hand, we claim that

pN-=1)/p %q # 1,

so that ¢t (N — 1)/p. Indeed, if equality were to hold in the previous display, then
we would have bV =1/P —1 = kg, violating the condition ged(bN=1/P —1 N) = 1.
Now we have,
tIN-1, tt(N-1)/p
so that p | ¢, and in fact
plt, t|qg—1
It follows that p | ¢ — 1, i.e., ¢% p = 1 as desired.
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Returning to the Lucas—Pocklington—Lehmer Criterion, recall that we have N =
p-U 4+ 1 where p > U. The properties of the base b show that all prime divisors ¢
of N satisfy ¢ % p = 1. If N were to be composite then it would have a prime divisor
g < V/N. But this forces ¢ < p, and hence ¢ % p # 1, contradiction. Therefore N is

prime.

6. DISCUSSION OF THE MILLER—RABIN TEST

Given a positive integer n and a base b, reason as follows.

Factor n — 1 = 2° - m where m is odd.

If n is prime then b"~! = 1 (here and throughout this discussion, all arith-
metic is being carried out modulo n). So by contraposition, if 5"~ # 1
then n is composite.

Hence we continue reasoning only if b”~! = 1. In this case we know a
square root of 1: it is b(»=1)/2,

If b(*=1/2 £ £1 then too many square roots of 1 exist mod n for n to be
prime, and so n is composite.

If 5("=1/2 = —1 then we have no evidence that n is composite, nor can we
proceed, since we have no new square roots of 1 to study. The algorithm
terminates, reporting that n could be prime.

But if 5("~1)/2 = 1 then we do have a new square root of 1 at hand: it is
b(nfl)/4'

This process can continue until 5™ = 1, so that b™ is a square root of 1.
If o™ # +1 then n is composite. Otherwise, n could be prime.

To encode the algorithm efficiently, the only wrinkle is to compute the powers of b
from low to high, even though the analysis here considered them from high to low.
Inspecting the highest power b”~! turns out to be redundant.

Another way to think about the Miller—Rabin test is as follows. Againlet n—1 =
2% -m. Then

X25m71 _1= (XQSilm =+ 1)(X2571m _ 1)

2372

m + 1)(X2372m _ 1)
2 (x

= (X¥Tm (X
= (X2 (X2 (X

2373

— (X D)X T (XY T 1) (X (X = 1),

That is, rewriting the left side and reversing the order of the factors of the right

side,

s—1
Xt o1= (X" 1) [[xF 0.
r=0

It follows that

s—1
= 1=0" = 1) [[(X*" + 1) mod n, forb=1,...,n—1.
r=0

If n is prime then b”~! — 1 = 0 mod n for b = 1,...,n, and also Z/nZ is a field,
so that necessarily one of the factors on the right side vanishes modulo n as well.
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That is, given any base b € {1,...,n — 1}, if n is prime then at least one of the
factors

-1, {P*"m+1:0<r<s—1}
vanishes modulo n. So conversely, given any base b € {1,...,n — 1}, if none of
the factors vanishes modulo n then n is composite. This analysis shows that the
Miller-Rabin test can be phrased as earlier in this writeup.

(Beginning of analysis of false positives.)
Lemma. Let p be an odd prime. Let n be a positive integer divisible by p®. Let
x,y be integers such that x = y mod p and z" ' = y" ' = 1 modn. Then v =
y mod p2.

First we note that 2P = y? mod p?. This follows quickly from the relation

2P —yP = (z =)@+ 2P Py PRy,

because the condition x = y mod p makes each of the multiplicands on the right
side a multiple of p. Second, raise both sides of the relation z? = 3P mod p?

to the power n/p to get 2™ = y" mod p?. But since 2" = x mod n, certainly
2™ = z mod p?, and similarly for y. The result follows.

Proposition. Let p be an odd prime. Let n be a positive integer divisible by p®. Let
B denote the set of bases b between 1 and n—1 such that n is a Fermat pseudoprime
base b, i.e.,
B={b:1<b<n-1andb" ' %n=1}.
Then
p—1
P2

1
|B| < ngz(n—l).

To see this, decompose B according to the values of its elements modulo p,
p—1
B=|JBa
d=1
where
By={beB:b%p=d}, 1<d<p-1.

For any d such that 1 < d < p—1, if b, by € Sy then we know that b; = by mod p?.
It follows that |Sy| < n/p?, and the result follows.



