
LARGE PRIME NUMBERS

1. Fermat Pseudoprimes

Fermat’s Little Theorem states that for any positive integer n,

if n is prime then bn % n = b for b = 1, . . . , n− 1.

In the other direction, all we can say is that

if bn % n = b for b = 1, . . . , n− 1 then n might be prime.

If bn % n = b where b ∈ {1, . . . , n − 1} then n is called a Fermat pseudoprime
base b.

There are 669 primes under 5000, but only five values of n (561, 1105, 1729, 2465,
and 2821) that are Fermat pseudoprimes base b for b = 2, 3, 5 without being prime.
This is a false positive rate of less than 1%. The false positive rate under 500,000
just for b = 2, 3 is 0.118%.

On the other hand, the bad news is that checking more bases b doesn’t reduce the
false positive rate much further. There are infinitely many Carmichael numbers,
numbers n that are Fermat pseudoprimes base b for all b ∈ {1, . . . , n − 1} but are
not prime.

In sum, Fermat pseudoprimes are reasonable candidates to be prime.

2. Strong Pseudoprimes

The Miller–Rabin test on a positive integer n and a positive test base b
in {1, . . . , n− 1} proceeds as follows.

• Factor n− 1 as 2sm where m is odd.
• Replace b by bm % n.
• If b = 1 then return the result that n could be prime, and terminate.
• Do the following s times: If b = n − 1 then return the result that n could

be prime, and terminate; otherwise replace b by b2 % n.
• If the algorithm has not yet terminated then return the result that n is

composite, and terminate.

(Slight speedups here: (1) If the same n is to be tested with various bases b then
there is no need to factor n − 1 = 2sm each time; (2) there is no need to com-
pute b2 % n on the sth time through the step in the fourth bullet.)

A positive integer n that passes the Miller–Rabin test for some b is a strong
pseudoprime base b.

For any n, at least 3/4 of the b-values in {1, . . . , n−1} have the property that if n
is a strong pseudoprime base b then n is really prime. But according to the theory,
up to 1/4 of the b-values have the property that n could be a strong pseudoprime
base b but not be prime. In practice, the percentage of such b’s is much lower. For
n up to 500,000, if n is a strong pseudoprime base 2 and base 3 then n is prime.
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3. Generating Candidate Large Primes

Given n, a simple approach to finding a candidate prime above 2n is as follows.
Take the first of N = 2n+1, N = 2n+3, N = 2n+5, . . . to pass the following test.

(1) Try trial division for a few small primes. If N passes, continue.
(2) Check whether N is a Fermat pseudoprime base 2. If N passes, continue.
(3) Check whether N is a strong pseudoprime base b as b runs through the first

20 primes.

Any N that passes the test is extremely likely to be prime. And such an N should
appear quickly. Indeed, using only the first three primes in step (3) of the previous
test finds the following correct candidate primes:

The first candidate prime after 1050 is 1050 + 151.
The first candidate prime after 10100 is 10100 + 267.
The first candidate prime after 10200 is 10200 + 357.
The first candidate prime after 10300 is 10300 + 331.
The first candidate prime after 101000 is 101000 + 453.

4. Certifiable Large Primes

The Lucas–Pocklington–Lehmer Criterion is as follows. Suppose that N =
p ·U + 1 where p is prime and p > U . Suppose also that there is a base b such that
bN−1 % N = 1 but gcd(bU − 1, N) = 1. Then N is prime.

The proof will be given in the next section. It is just Fermat’s Little Theorem
and some other basic number theory.

As an example of using the result, start with

p = 1000003.

This is small enough that its primality is easily verified by trial division. A candidate
prime above 1000 · p of the form p · U + 1 is

N = 1032 · p + 1 = 1032003097.

And 2N−1 % N = 1 and gcd(21032 − 1, N) = 1, so the LPL Criterion is satisfied,
and N is prime. Rename it p.

A candidate prime above 109 · p of the form p · U + 1 is

N = p · (109 + 146) + 1 = 1032003247672452163.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 1017 · p of the form p · U + 1 is

N = p · (1017 + 24) + 1 = 103200324767245241068077944138851913.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 1034 · p of the form p · U + 1 is

N = p · (1034 + 224) + 1 =10320032476724524106807794413885422
46872747862933999249459487102828513.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.



LARGE PRIME NUMBERS 3

A candidate prime above 1060 · p of the form p · U + 1 is

N = p · (1060 + 1362) + 1 =10320032476724524106807794413885422
468727478629339992494608926912518428
801833472215991711945402406825893161
06977763821434052434707.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 10120 · p of the form p · U + 1 is

N = p · (10120 + 796) + 1 =10320032476724524106807794413885422
468727478629339992494608926912518428
801833472215991711945402406825893161
069777638222555270198542721189019004
353452796285107072988954634025708705
822364669326259443883929402708540315
83341095621154300001861505738026773.

Again b = 2 works in the LPL Criterion, so N is prime.

5. Proof of the Lucas–Pocklington–Lehmer Criterion

Recall the Lucas–Pocklington–Lehmer Criterion: Suppose that N = p · U +
1 where p is prime and p > U . Suppose also that there is a base b such that
bN−1 % N = 1 but gcd(bU − 1, N) = 1. Then N is prime.

The proof begins with an observation that goes back to Fermat and Euler:
Fermat–Euler Criterion. Let p be prime. Let N be an integer such that

N % p = 1.

If there is an integer b such that

bN−1 % N = 1 and gcd(b(N−1)/p − 1, N) = 1

then
q % p = 1 for each prime divisor q of N.

To prove the Fermat–Euler criterion, let q be any prime divisor of N . Since
bN−1 % N = 1, it follows that

bN−1 % q = 1.

Let t be the smallest positive integer such that bt % q = 1. Thus t | N − 1, and also
t | q − 1 by Fermat’s Little Theorem. On the other hand, we claim that

b(N−1)/p % q 6= 1,

so that t - (N − 1)/p. Indeed, if equality were to hold in the previous display, then
we would have b(N−1)/p − 1 = kq, violating the condition gcd(b(N−1)/p − 1, N) = 1.
Now we have,

t | N − 1, t - (N − 1)/p

so that p | t, and in fact
p | t, t | q − 1.

It follows that p | q − 1, i.e., q % p = 1 as desired.
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Returning to the Lucas–Pocklington–Lehmer Criterion, recall that we have N =
p · U + 1 where p > U . The properties of the base b show that all prime divisors q
of N satisfy q % p = 1. If N were to be composite then it would have a prime divisor
q ≤

√
N . But this forces q < p, and hence q % p 6= 1, contradiction. Therefore N is

prime.

6. Discussion of the Miller–Rabin Test

Given a positive integer n and a base b, reason as follows.
• Factor n− 1 = 2s ·m where m is odd.
• If n is prime then bn−1 = 1 (here and throughout this discussion, all arith-

metic is being carried out modulo n). So by contraposition, if bn−1 6= 1
then n is composite.

• Hence we continue reasoning only if bn−1 = 1. In this case we know a
square root of 1: it is b(n−1)/2.

• If b(n−1)/2 6= ±1 then too many square roots of 1 exist mod n for n to be
prime, and so n is composite.

• If b(n−1)/2 = −1 then we have no evidence that n is composite, nor can we
proceed, since we have no new square roots of 1 to study. The algorithm
terminates, reporting that n could be prime.

• But if b(n−1)/2 = 1 then we do have a new square root of 1 at hand: it is
b(n−1)/4.

• This process can continue until b2m = 1, so that bm is a square root of 1.
If bm 6= ±1 then n is composite. Otherwise, n could be prime.

To encode the algorithm efficiently, the only wrinkle is to compute the powers of b
from low to high, even though the analysis here considered them from high to low.
Inspecting the highest power bn−1 turns out to be redundant.

Another way to think about the Miller–Rabin test is as follows. Again let n−1 =
2s ·m. Then

X2sm−1 − 1 = (X2s−1m + 1)(X2s−1m − 1)

= (X2s−1m + 1)(X2s−2m + 1)(X2s−2m − 1)

= (X2s−1m + 1)(X2s−2m + 1)(X2s−3m + 1)(X2s−3m − 1)
...

= (X2s−1m + 1)(X2s−2m + 1)(X2s−3m + 1) · · · (Xm + 1)(Xm − 1).

That is, rewriting the left side and reversing the order of the factors of the right
side,

Xn−1 − 1 = (Xm − 1) ·
s−1∏
r=0

(X2rm + 1).

It follows that

bn−1 − 1 = (bm − 1) ·
s−1∏
r=0

(X2rm + 1) mod n, for b = 1, . . . , n− 1.

If n is prime then bn−1 − 1 = 0 mod n for b = 1, . . . , n, and also Z/nZ is a field,
so that necessarily one of the factors on the right side vanishes modulo n as well.
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That is, given any base b ∈ {1, . . . , n − 1}, if n is prime then at least one of the
factors

bm − 1, {b2rm + 1 : 0 ≤ r ≤ s− 1}
vanishes modulo n. So conversely, given any base b ∈ {1, . . . , n − 1}, if none of
the factors vanishes modulo n then n is composite. This analysis shows that the
Miller–Rabin test can be phrased as earlier in this writeup.

(Beginning of analysis of false positives.)
Lemma. Let p be an odd prime. Let n be a positive integer divisible by p2. Let
x, y be integers such that x = y mod p and xn−1 = yn−1 = 1 mod n. Then x =
y mod p2.

First we note that xp = yp mod p2. This follows quickly from the relation

xp − yp = (x− y)(xp−1 + xp−2y + · · ·+ xyp−2 + yp−1),

because the condition x = y mod p makes each of the multiplicands on the right
side a multiple of p. Second, raise both sides of the relation xp = yp mod p2

to the power n/p to get xn = yn mod p2. But since xn = x mod n, certainly
xn = x mod p2, and similarly for y. The result follows.

Proposition. Let p be an odd prime. Let n be a positive integer divisible by p2. Let
B denote the set of bases b between 1 and n−1 such that n is a Fermat pseudoprime
base b, i.e.,

B = {b : 1 ≤ b ≤ n− 1 and bn−1 % n = 1}.
Then

|B| ≤ p− 1
p2

n ≤ 1
4
(n− 1).

To see this, decompose B according to the values of its elements modulo p,

B =
p−1⋃
d=1

Bd

where
Bd = {b ∈ B : b % p = d}, 1 ≤ d ≤ p− 1.

For any d such that 1 ≤ d ≤ p−1, if b1, b2 ∈ Sd then we know that b1 = b2 mod p2.
It follows that |Sd| ≤ n/p2, and the result follows.


