LARGE PRIME NUMBERS

1. Fermat Pseudoprimes

Fermat's Little Theorem states that for any positive integer *n*,

if n is prime then $b^n \% n = b$ for $b = 1, \ldots, n - 1$.

In the other direction, all we can say is that

if $b^n \% n = b$ for b = 1, ..., n - 1 then n might be prime.

If $b^n \% n = b$ where $b \in \{1, ..., n-1\}$ then n is called a **Fermat pseudoprime base** b.

There are 669 primes under 5000, but only five values of n (561, 1105, 1729, 2465, and 2821) that are Fermat pseudoprimes base b for b = 2, 3, 5 without being prime. This is a false positive rate of less than 1%. The false positive rate under 500,000 just for b = 2, 3 is 0.118%.

On the other hand, the bad news is that checking more bases b doesn't reduce the false positive rate much further. There are infinitely many **Carmichael numbers**, numbers n that are Fermat pseudoprimes base b for all $b \in \{1, ..., n-1\}$ but are not prime.

In sum, Fermat pseudoprimes are reasonable candidates to be prime.

2. Strong Pseudoprimes

The **Miller–Rabin test** on a positive integer n and a positive test base b in $\{1, \ldots, n-1\}$ proceeds as follows.

- Factor n-1 as $2^{s}m$ where m is odd.
- Replace b by $b^m \% n$.
- If b = 1 then return the result that n could be prime, and terminate.
- Do the following s times: If b = n 1 then return the result that n could be prime, and terminate; otherwise replace b by $b^2 \% n$.
- If the algorithm has not yet terminated then return the result that n is composite, and terminate.

(Slight speedups here: (1) If the same n is to be tested with various bases b then there is no need to factor $n - 1 = 2^s m$ each time; (2) there is no need to compute $b^2 \% n$ on the *s*th time through the step in the fourth bullet.)

A positive integer n that passes the Miller–Rabin test for some b is a **strong** pseudoprime base b.

For any n, at least 3/4 of the *b*-values in $\{1, \ldots, n-1\}$ have the property that if n is a strong pseudoprime base b then n is really prime. But according to the theory, up to 1/4 of the *b*-values have the property that n could be a strong pseudoprime base b but not be prime. In practice, the percentage of such b's is much lower. For n up to 500,000, if n is a strong pseudoprime base 2 and base 3 then n is prime.

LARGE PRIME NUMBERS

3. Generating Candidate Large Primes

Given n, a simple approach to finding a candidate prime above 2n is as follows. Take the first of N = 2n + 1, N = 2n + 3, N = 2n + 5, ... to pass the following test.

- (1) Try trial division for a few small primes. If N passes, continue.
- (2) Check whether N is a Fermat pseudoprime base 2. If N passes, continue.
- (3) Check whether N is a strong pseudoprime base b as b runs through the first 20 primes.

Any N that passes the test is extremely likely to be prime. And such an N should appear quickly. Indeed, using only the first *three* primes in step (3) of the previous test finds the following correct candidate primes:

The first candidate prime after	10^{50}	is	$10^{50} + 151.$
The first candidate prime after	10^{100}	is	$10^{100} + 267.$
The first candidate prime after	10^{200}	is	$10^{200} + 357.$
The first candidate prime after	10^{300}	is	$10^{300} + 331.$
The first candidate prime after	10^{1000}	is	$10^{1000} + 453.$

4. Certifiable Large Primes

The Lucas-Pocklington-Lehmer Criterion is as follows. Suppose that $N = p \cdot U + 1$ where p is prime and p > U. Suppose also that there is a base b such that $b^{N-1} \% N = 1$ but $gcd(b^U - 1, N) = 1$. Then N is prime.

The proof will be given in the next section. It is just Fermat's Little Theorem and some other basic number theory.

As an example of using the result, start with

p = 1000003.

This is small enough that its primality is easily verified by trial division. A candidate prime above $1000 \cdot p$ of the form $p \cdot U + 1$ is

$$N = 1032 \cdot p + 1 = 1032003097$$

And $2^{N-1} \% N = 1$ and $gcd(2^{1032} - 1, N) = 1$, so the LPL Criterion is satisfied, and N is prime. Rename it p.

A candidate prime above $10^9 \cdot p$ of the form $p \cdot U + 1$ is

$$N = p \cdot (10^9 + 146) + 1 = 1032003247672452163.$$

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p. A candidate prime above $10^{17} \cdot p$ of the form $p \cdot U + 1$ is

$$N = p \cdot (10^{17} + 24) + 1 = 103200324767245241068077944138851913.$$

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p. A candidate prime above $10^{34} \cdot p$ of the form $p \cdot U + 1$ is

$$N = p \cdot (10^{34} + 224) + 1 = 10320032476724524106807794413885422$$

46872747862933999249459487102828513.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.

A candidate prime above $10^{60} \cdot p$ of the form $p \cdot U + 1$ is

$$\begin{split} N &= p \cdot (10^{60} + 1362) + 1 = & 10320032476724524106807794413885422 \\ & 468727478629339992494608926912518428 \\ & 801833472215991711945402406825893161 \\ & 06977763821434052434707. \end{split}$$

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p. A candidate prime above $10^{120} \cdot p$ of the form $p \cdot U + 1$ is

$$\begin{split} N &= p \cdot (10^{120} + 796) + 1 = & 10320032476724524106807794413885422 \\ & 468727478629339992494608926912518428 \\ & 801833472215991711945402406825893161 \\ & 069777638222555270198542721189019004 \\ & 353452796285107072988954634025708705 \\ & 822364669326259443883929402708540315 \\ & 83341095621154300001861505738026773. \end{split}$$

Again b = 2 works in the LPL Criterion, so N is prime.

5. PROOF OF THE LUCAS-POCKLINGTON-LEHMER CRITERION

Recall the Lucas-Pocklington-Lehmer Criterion: Suppose that $N = p \cdot U + 1$ where p is prime and p > U. Suppose also that there is a base b such that $b^{N-1} \% N = 1$ but $gcd(b^U - 1, N) = 1$. Then N is prime.

The proof begins with an observation that goes back to Fermat and Euler: Fermat-Euler Criterion. Let p be prime. Let N be an integer such that

$$N \% p = 1.$$

If there is an integer b such that

$$b^{N-1}$$
 % $N = 1$ and $gcd(b^{(N-1)/p} - 1, N) = 1$

then

$$q \% p = 1$$
 for each prime divisor q of N.

To prove the Fermat–Euler criterion, let q be any prime divisor of N. Since $b^{N-1}\,\%\,N=1,$ it follows that

$$b^{N-1} \% q = 1.$$

Let t be the smallest positive integer such that $b^t \% q = 1$. Thus $t \mid N-1$, and also $t \mid q-1$ by Fermat's Little Theorem. On the other hand, we claim that

$$b^{(N-1)/p} \% q \neq 1,$$

so that $t \nmid (N-1)/p$. Indeed, if equality were to hold in the previous display, then we would have $b^{(N-1)/p} - 1 = kq$, violating the condition $gcd(b^{(N-1)/p} - 1, N) = 1$. Now we have,

$$t \mid N-1, \quad t \nmid (N-1)/p$$

so that $p \mid t$, and in fact

 $p \mid t, \quad t \mid q-1.$

It follows that $p \mid q-1$, i.e., q % p = 1 as desired.

Returning to the Lucas–Pocklington–Lehmer Criterion, recall that we have $N = p \cdot U + 1$ where p > U. The properties of the base b show that all prime divisors q of N satisfy q % p = 1. If N were to be composite then it would have a prime divisor $q \le \sqrt{N}$. But this forces q < p, and hence $q \% p \ne 1$, contradiction. Therefore N is prime.

6. DISCUSSION OF THE MILLER-RABIN TEST

Given a positive integer n and a base b, reason as follows.

- Factor $n 1 = 2^s \cdot m$ where m is odd.
- If n is prime then $b^{n-1} = 1$ (here and throughout this discussion, all arithmetic is being carried out modulo n). So by contraposition, if $b^{n-1} \neq 1$ then n is composite.
- Hence we continue reasoning only if $b^{n-1} = 1$. In this case we know a square root of 1: it is $b^{(n-1)/2}$.
- If $b^{(n-1)/2} \neq \pm 1$ then too many square roots of 1 exist mod n for n to be prime, and so n is composite.
- If $b^{(n-1)/2} = -1$ then we have no evidence that n is composite, nor can we proceed, since we have no new square roots of 1 to study. The algorithm terminates, reporting that n could be prime.
- But if $b^{(n-1)/2} = 1$ then we do have a new square root of 1 at hand: it is $b^{(n-1)/4}$.
- This process can continue until $b^{2m} = 1$, so that b^m is a square root of 1. If $b^m \neq \pm 1$ then *n* is composite. Otherwise, *n* could be prime.

To encode the algorithm efficiently, the only wrinkle is to compute the powers of b from low to high, even though the analysis here considered them from high to low. Inspecting the highest power b^{n-1} turns out to be redundant.

Another way to think about the Miller–Rabin test is as follows. Again let $n-1 = 2^s \cdot m$. Then

$$\begin{aligned} X^{2^{s}m-1} - 1 &= (X^{2^{s-1}m} + 1)(X^{2^{s-1}m} - 1) \\ &= (X^{2^{s-1}m} + 1)(X^{2^{s-2}m} + 1)(X^{2^{s-2}m} - 1) \\ &= (X^{2^{s-1}m} + 1)(X^{2^{s-2}m} + 1)(X^{2^{s-3}m} + 1)(X^{2^{s-3}m} - 1) \\ &\vdots \\ &= (X^{2^{s-1}m} + 1)(X^{2^{s-2}m} + 1)(X^{2^{s-3}m} + 1)\cdots(X^m + 1)(X^m - 1). \end{aligned}$$

That is, rewriting the left side and reversing the order of the factors of the right side,

$$X^{n-1} - 1 = (X^m - 1) \cdot \prod_{r=0}^{s-1} (X^{2^r m} + 1).$$

It follows that

$$b^{n-1} - 1 = (b^m - 1) \cdot \prod_{r=0}^{s-1} (X^{2^r m} + 1) \mod n, \text{ for } b = 1, \dots, n-1.$$

If n is prime then $b^{n-1} - 1 = 0 \mod n$ for b = 1, ..., n, and also $\mathbf{Z}/n\mathbf{Z}$ is a field, so that necessarily one of the factors on the right side vanishes modulo n as well.

That is, given any base $b \in \{1, ..., n-1\}$, if n is prime then at least one of the factors

$$b^m - 1, \quad \{b^{2'm} + 1 : 0 \le r \le s - 1\}$$

vanishes modulo n. So conversely, given any base $b \in \{1, \ldots, n-1\}$, if none of the factors vanishes modulo n then n is composite. This analysis shows that the Miller-Rabin test can be phrased as earlier in this writeup.

(Beginning of analysis of false positives.)

Lemma. Let p be an odd prime. Let n be a positive integer divisible by p^2 . Let x, y be integers such that $x = y \mod p$ and $x^{n-1} = y^{n-1} = 1 \mod n$. Then $x = y \mod p^2$.

First we note that $x^p = y^p \mod p^2$. This follows quickly from the relation

 $x^{p} - y^{p} = (x - y)(x^{p-1} + x^{p-2}y + \dots + xy^{p-2} + y^{p-1}),$

because the condition $x = y \mod p$ makes each of the multiplicands on the right side a multiple of p. Second, raise both sides of the relation $x^p = y^p \mod p^2$ to the power n/p to get $x^n = y^n \mod p^2$. But since $x^n = x \mod n$, certainly $x^n = x \mod p^2$, and similarly for y. The result follows.

Proposition. Let p be an odd prime. Let n be a positive integer divisible by p^2 . Let B denote the set of bases b between 1 and n-1 such that n is a Fermat pseudoprime base b, *i.e.*,

 $B = \{b : 1 \le b \le n-1 \text{ and } b^{n-1} \% n = 1\}.$

$$|B| \le \frac{p-1}{n^2} n \le \frac{1}{4}(n-1).$$

To see this, decompose B according to the values of its elements modulo p,

$$B = \bigcup_{d=1}^{p-1} B_d$$

where

$$B_d = \{b \in B : b \% p = d\}, \quad 1 \le d \le p - 1.$$

For any d such that $1 \leq d \leq p-1$, if $b_1, b_2 \in S_d$ then we know that $b_1 = b_2 \mod p^2$. It follows that $|S_d| \leq n/p^2$, and the result follows.