RATIONAL PARAMETRIZATION OF CONICS

1. The General Situation

Let k denote any field, and let K be any extension field of k, possibly K = k. A *line defined over* k is an equation

$$\mathcal{L}: Ax + By = C, \quad A, B, C \in k,$$

where at least one of A, B is nonzero. A *K*-rational point of \mathcal{L} is a solution $(x, y) \in K^2$ of \mathcal{L} . The set of *K*-rational points of \mathcal{L} is denoted \mathcal{L}_K .

Similarly, a conic curve defined over k is an equation

$$C: ax^{2} + bxy + cy^{2} + dx + ey + f = 0, \quad a, b, c, d, e, f \in k,$$

where at least one of a, b, c nonzero. A *K*-rational point of \mathcal{L} is a solution $(x, y) \in K^2$ of \mathcal{C} , and the set of *K*-rational points of \mathcal{L} is denoted \mathcal{C}_K . (Note: \mathcal{C}_K may not contain any points at all. For example, let $k = K = \mathbb{R}$ and consider the conic curve $C: x^2 + y^2 = -1$.)

Proposition 1.1. Suppose that C_K contains a point $P = (x_P, y_P)$ not in \mathcal{L}_K . Then the points of C_K other than P are in bijective correspondence with the points of \mathcal{L}_K .

Proof. First note that after a coordinate translation, we may let P = (0,0), although now the coefficients of \mathcal{L} and \mathcal{C} could lie in K rather than k.

For any given point $Q = (x_Q, y_Q) \in \mathcal{C}_K$ such that $Q \neq P$, let $t = y_Q/x_Q \in K$ and then solve the equation $\mathcal{L}(x, tx)$ for a unique $x_R \in K$. Let $y_R = tx_R$. The point $R = (x_R, y_R) \in \mathcal{L}_K$ is collinear with P and Q.

Conversely, for any given point $R = (x_R, y_R) \in \mathcal{L}_K$ such that $R \neq P$, let $t = y_R/x_R \in K$ and then consider the equation $\mathcal{C}(x, tx)$. This quadratic equation has x = 0 as a solution, but after dividing the equation through by x there is a unique second solution $x_Q \in K$. (Possibly $x_Q = 0$ as well.) Let $y_Q = tx_Q$. The point $Q = (x_Q, y_Q) \in \mathcal{C}_K$ is collinear with P and R.

The argument here has left out the case where all the x-coordinates agree. This situation can be handled as a special case. $\hfill \Box$

Note that the fields k and K in this discussion are completely general. For example, k could be the field of p elements for some prime p, and K could be the field of $q = p^e$ elements for some positive integer e.

2. The Circle in Particular

Now define

$$\mathcal{L} : x = 0,$$

$$\mathcal{C} : x^2 + y^2 = 1,$$

and let P = (-1, 0), an element of C_k for any field k.

Given a point $Q = (x_Q, y_Q) \in \mathcal{C}_K$, the corresponding point on \mathcal{L}_K is

$$R = \left(0, \frac{y_Q}{x_Q + 1}\right).$$

Conversely, given a point $R = (0, y_R) \in \mathcal{L}_K$, let $t = y_R$. We seek a point $Q = (x, t(x+1)) \in \mathcal{C}_K$. But

$$x^{2} + y^{2} = ((x+1) - 1)^{2} + t^{2}(x+1)^{2} = (1+t^{2})(x+1)^{2} - 2(x+1) + 1,$$

so we want

$$(1+t^2)(x+1)^2 - 2(x+1) = 0,$$

or $(1 + t^2)(x + 1) = 2$, or $x + 1 = 2/(1 + t^2)$. Since y = t(x + 1) it follows that $y = 2t/(1 + t^2)$, so that finally,

$$Q = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) \,.$$

3. AN APPLICATION FROM CALCULUS

Let θ denote the angle to a point $(x, y) \in \mathcal{C}_{\mathbb{R}}$. Then the quantity t in the previous discussion is

$$t = \tan(\theta/2).$$

Thus $\theta = 2 \arctan(t)$, giving the third of the equalities

$$\cos(\theta) = \frac{1-t^2}{1+t^2}, \quad \sin(\theta) = \frac{2t}{1+t^2}, \quad d\theta = \frac{2 dt}{1+t^2}.$$

The rational parametrization of the circle gives rise to the substitution in elementary calculus that reduces any integral of a rational function of the transcendental functions $\cos(\theta)$ and $\sin(\theta)$ of the variable of integration θ to the integral of a rational function of the variable of integration t.

4. AN APPLICATION FROM ELEMENTARY NUMBER THEORY

A primitive Pythagorean triple takes the form

$$(a, b, c) \in \mathbb{Z}^3$$
, $a^2 + b^2 = c^2$, $a, b, c > 0$, $gcd(a, b, c) = 1$.

It follows that in fact a, b, and c are pairwise coprime. We may take a odd, b even, and c odd. (Inspection modulo 4 shows that the case where a and b are odd but c is even can't arise.)

Given such a triple, let x = a/c and y = b/c. Then (x, y) is a point of $\mathcal{C}_{\mathbb{Q}}$,

$$(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right), \quad t = s/r \in \mathbb{Q}.$$

It follows that

$$(x,y) = \left(\frac{r^2 - s^2}{r^2 + s^2}, \frac{2rs}{r^2 + s^2}\right), \quad s, r \in \mathbb{Z}.$$

Here we take 0 < s < r, gcd(r, s) = 1. If in addition, r and s have opposite parities then the quotients will be in lowest terms, so that

$$(a, b, c) = (r^2 - s^2, 2rs, r^2 + s^2).$$

	r=2	r = 3	r=4	r = 5	r = 6	r = 7
s = 1	(3, 4, 5)		(15, 8, 17)		(35, 12, 37)	
s=2		(5, 12, 13)		(21, 20, 29)		(45, 28, 53)
s = 3			(7, 24, 25)			
s = 4				(9, 40, 41)		(33, 56, 65)
s = 5					(11, 60, 61)	
s = 6						(13, 84, 85)

Thus we can systematically write down all Pythagorean triples in a table. The table begins as follows.