RATIONAL PARAMETRIZATION OF CONICS

1. THE GENERAL SITUATION

Let k denote any field, and let K be any extension field of k, possibly K = k.
A line defined over k is an equation

L:Az+By=C, A B,Ce€k,

where at least one of A, B is nonzero. A K-rational point of L is a solution
(x,y) € K? of L. The set of K-rational points of £ is denoted Lx.
Similarly, a conic curve defined over k is an equation

C:ax’ +bry+cy> +de+ey+f=0, a,bcde fek,

where at least one of a, b, ¢ nonzero. A K -rational point of L is a solution (x,y) €
K? of C, and the set of K-rational points of £ is denoted Cx. (Note: Cx may not
contain any points at all. For example, let £ = K = R and consider the conic curve
C:2?+y?>=-1)

Proposition 1.1. Suppose that Cx contains a point P = (zp,yp) not in Li.
Then the points of Cx other than P are in bijective correspondence with the points

OfﬁK

Proof. First note that after a coordinate translation, we may let P = (0,0), al-
though now the coefficients of £ and C could lie in K rather than k.

For any given point @ = (zq,yq) € Cx such that Q # P, let t = yg/zq € K
and then solve the equation L(z,tx) for a unique xp € K. Let ygp = txr. The
point R = (xg,yr) € Lk is collinear with P and Q.

Conversely, for any given point R = (xg,yr) € Lk such that R # P, let
t = yr/xr € K and then consider the equation C(x,tx). This quadratic equation
has z = 0 as a solution, but after dividing the equation through by x there is a
unique second solution zg € K. (Possibly zg = 0 as well.) Let yg = tzg. The
point @ = (2, yq) € Ck is collinear with P and R.

The argument here has left out the case where all the z-coordinates agree. This
situation can be handled as a special case. ([l

Note that the fields £ and K in this discussion are completely general. For
example, k could be the field of p elements for some prime p, and K could be the
field of ¢ = p°© elements for some positive integer e.

2. THE CIRCLE IN PARTICULAR

Now define

L:x=0,
C:2*>+y*=1,

and let P = (—1,0), an element of C;, for any field k.
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Given a point @ = (zg,yg) € Ck, the corresponding point on L is

Rz(O,yQ )
g +1

Conversely, given a point R = (0,yr) € Lk, let t = yr. We seek a point Q) =
(z,t(x+1)) € Ck. But

P2y =((z+1) -1+ 2@+ 1) =1+ (xz+1)* =2z +1)+1,
so we want
1+t (x+1)*=2(x+1) =0,

or (1+t*)(z+1) =2 orz+1=2/(1+1?). Since y = t(x + 1) it follows that
y = 2t/(1+ 1), so that finally,

1—t2 2t
Q f— 72, 2 .
1+¢t2"1+1¢
3. AN APPLICATION FrROM CALCULUS

Let 6 denote the angle to a point (z,y) € Cg. Then the quantity ¢ in the previous
discussion is

t = tan(0/2).
Thus 6 = 2arctan(t), giving the third of the equalities
11— 2t 2dt
cos(f) = 15 sin(f) = i =15 i

The rational parametrization of the circle gives rise to the substitution in elemen-
tary calculus that reduces any integral of a rational function of the transcendental
functions cos(f) and sin(f) of the variable of integration € to the integral of a
rational function of the variable of integration ¢.

4. AN APPLICATION FROM ELEMENTARY NUMBER THEORY
A primitive Pythagorean triple takes the form
(a,b,c) €73, a*>+b*=¢c% a,b,c>0, ged(a,b,c)=1.

It follows that in fact a, b, and ¢ are pairwise coprime. We may take a odd, b even,
and ¢ odd. (Inspection modulo 4 shows that the case where a and b are odd but ¢
is even can’t arise.)

Given such a triple, let x = a/c and y = b/c. Then (z,y) is a point of Cg,

1—t2 2t
= —_— t: .
(z.9) <1+t2,1+t2), 5/r€Q

It follows that
2

2
re—s 2rs
(z,y) = (7"2+32’r2+32) ;ST EL.

Here we take 0 < s < r, ged(r, s) = 1. If in addition, r and s have opposite parities
then the quotients will be in lowest terms, so that

’ (a,b,¢) = (r* — s2,2rs, 1% + 5?). ‘
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Thus we can systematically write down all Pythagorean triples in a table. The
table begins as follows.

’ H r=2 ‘ r=3 ‘ r=4 ‘ r=>5 ‘ r==6 ‘ r=17 ‘
s=11(3,4,5) (15,8,17) (35,12,37)
s=2 (5,12,13) (21,20, 29) (45,28,53)
s=3 (7,24, 25)
s=4 (9,40, 41) (33,56, 65)
s=5 (11,60,61)
s=6 (13,84, 85)




