
Math 121: Introduction to Computing Handout #22

The Demo Programs in Folder Assignment5

A. Arrays. The concept of an array as a linear list of data, i.e., as the programming
manifestation of a list, is not a difficult one. There is some new syntax associated with
arrays, but that also should come easily. In learning about arrays, the harder concepts to
master are

1. How arrays are represented internally. Understanding the internal representation of

arrays is important for building your intuition about how array parameters work.
2. How to use arrays effectively in applications. Even though the mechanics of arrays

are simple, it may not always be apparent when to use them. For applications that
involve lists of data values, arrays come up naturally. There are, however, several
circumstances in which the idea of using an array is harder to see.

The Roberts text includes an extensive discussion of the representation of arrays. This
handout focuses on the second question in the context of a specific application that uses
arrays in two rather different contexts.

The program LetterFrequency.java creates a table of the frequency of letters
appearing in a text file. Such a program could be used in solving cryptograms, simple
letter-substitution ciphers in which each letter in the plaintext message is replaced by
some other letter. As an example, given a file containing the following cryptogram:

UTK UR VAKGK LKT NG HKTNBG VU VAK UVAKE;
QTF GU UR VAKGK. MANIA NG VAK TQVBEQO LQT,
QTF MANIA VAK GXNENV? MAU FKINXAKEG VAKL?
-- GAQZKGXKQEK, IULKFY UR KEEUEG

the LetterFrequency program should produce the following output for this file:

 – 2 –

This program takes account of the following requirements:

• The program should count only the letters in the file. All other characters should be

ignored.
• The program should ignore the case of each letter. Thus, if the file contains both an

uppercase A and a lowercase a, the program should treat them as the same letter and
make two entries in the corresponding counting array.

• The report at the end should be in order by letter and should not include any letters that
do not appear in the cryptogram.

Letter-frequency programs are useful because they suggest what letters in the cryptogram
might correspond to the most common letters in English. For example, in the sample run
above, the characters K, A, and G each occur frequently and therefore might represent
letters such as E or T in the original.

The program List.java illustrates by toy example how a FORTRAN programmer
would implement list-management and garbage collection in the bad old days. Here the
data are characters, so that part of memory is allocated as an array of characters. A
second array, of integers, encodes the list of character array entries that is in use, and the
list of character array entries that is free. Finally, individual integers point to the heads of
the two lists. Since array indexing starts at 0, the value -1 connotes a null pointer.

B. The ArrayList and HashMap Classes Most of the power associated with modern,
object-oriented languages such as Java does not come from the language itself but instead
derives from the vast array of standard library classes that accompanies the language
itself. For Java, that set of libraries is called the Java Development Kit, or JDK for short.
The two classes ArrayList and HashMap form part of a much larger structure called the
Java Collections Framework, which was added to the JDK as part of release 1.2 (we’re
now up to JDK version 1.5). As its name implies, the Java Collections Framework is
designed to make it easier for programmers to work with collections of data of various
kinds. The ArrayList class is designed to make it easier to work with ordered lists of data
without having to take account of the low-level details of arrays. The HashMap class
provides the ability to organize a collection, not by a linear order, but rather by setting up
an association between a set of keys and a corresponding set of values.

Given any class in a toolkit like the JDK, it is possible to understand that class from a
variety of perspectives. From a holistic perspective, each class is defined in terms by its
abstract behavior. In this view, the important information about a class consists of the
public methods it exports and a high-level model of what those methods do. From a
reductionistic perspective, on the other hand, a class is defined in terms of its underlying
implementation. At this level, the important information lies in the actual code for the
methods it contains. If you are creating a class, you need to be concerned about each of
these perspectives. In the more likely case that you are using a class as a tool, you can
limit yourself to the more holistic, abstract view. In programming parlance, code that

 – 3 –

makes use of a class—and by extension the programmers who write that code—are called
clients of that class. As a general rule, clients can remain blissfully ignorant of the
implementation of a class and concentrate solely on the abstraction it presents to the
outside world.

In Math 121, our primary concern is to learn how to use classes as clients, but the
algorithms and data structures course will look more deeply into how these classes are
implemented and how clever algorithms make them as efficient as possible.

The ArrayList class
A detailed description of this class appears in the Roberts text. The most important
methods for the ArrayList class appear in Figure 10-4. This handout focuses on the
relative advantages and disadvantages of ArrayLists with respect to Java arrays and,
more specifically, the complexity of using wrapper classes to store primitive data values
in an ArrayList.

The most important advantages that ArrayLists offer over arrays are the following:

• An ArrayList can change its size dynamically without forcing the client to take care

of the details. Once allocated, an array has a fixed length. Although it is possible to
simulate the behavior of an ArrayList by reallocating a new array with the desired
size and reassigning that value to the array variable, the client programmer must
explicitly copy values from the old array into the new one.

• The fact that ArrayLists can grow and shrink dynamically makes it possible to define
operations like add and remove that insert and delete elements. Java arrays offer no
analogous operations.

• ArrayLists support a wide variety of additional operations beyond what is built into
arrays. In particular, the ArrayList class includes the methods indexOf and
contains, which allow clients to search an ArrayList for a particular value.

Although these advantages offer considerably more flexibility and power to the client, it
is important to note that the ArrayList does have weaknesses, including the following:

• Using the ArrayList class is typically less efficient than working directly with the

underlying arrays.
• The elements of an ArrayList are defined to be of class Object, which is the

universal superclass for all other classes in Java. Because this class is invariably more
general than the objects the client programmer stores in the ArrayList, it is almost
always necessary to use a type cast when retrieving an object. As an example, suppose
that you have created an ArrayList called stringList and used it to store values of
type String. You could not retrieve the element at index position i simply by writing

String s = stringList.get(i);

 because the value returned by get is an Object and is not yet known to be a String.

You would instead need to code this statement using an explicit cast, as follows:

 – 4 –

String s = (String) stringList.get(i);

• An ArrayList cannot hold a value of a primitive type such as int or char because

such values are not objects. To get around this problem, you need to use the wrapper
classes defined on page 179 of the text. Thus, to add a character ch to the end of an
ArrayList called charList, you would need to write

charList.add(new Character(ch));

 If you later wanted to retrieve the ith element from the list, you would need to use the
rather cryptic expression

((Character) charList.get(i)).charValue()

The newest version of Java—Java 2 Standard Edition 5.0—contains features that largely
eliminate the last two disadvantages, so things are getting better

The HashMap class
Because it offers the same underlying data model as traditional arrays, the ArrayList
class does not really offer much that seems new and exciting. In both structures, the
elements of the collection are identified by a position number, which makes perfect sense
if the data you are working with can be arranged in a linear order. In many applications,
however, specifying a numeric index is not the ideal mechanism for identifying a
particular element. It is often far more useful to associate data with an identifying value
called a key that makes it easy to find that data in a large collection.

As an example, consider how you might represent a dictionary as a Java data structure.
The fundamental property of a dictionary is that it associates words with definitions.
Given a word, you’d like a simple way to retrieve its definition. You could, of course,
store both the words and their corresponding definitions in arrays as shown in Figure 1.
The words array would begin with the strings "a", "aah", and "aardvark" and end some
87,000+ entries later with "zymogram" and "zymosan". The definitions could then be
stored in a parallel array of strings called definitions. To look up a word in the
dictionary, all you would need to do is find the word in the words array and then look up
the corresponding index position in definitions.

 – 5 –

The strategy depicted in Figure 1, however, is entirely focused on the underlying

representation and implementation. As a modern programmer, you are usually better off
ignoring those low-level considerations and focusing instead on finding some class in the
library that has the necessary abstract behavior. Here, all you need is a structure that can
transform words into their corresponding definitions. How it does so might be interesting
at some level—and indeed the HashMap class represents one of the cleverest ideas in an
algorithms and data structures course—but entirely unnecessary for clients of the
package. Thus, you need to find a structure that provides the following “black box”
function:

"zymogram" "An electrophoretic strip."Map

In Java, the structure that you need is called a map . Conceptually, a map provides an
association between keys (in this case, the words) and a corresponding value (in this
case, the definitions). The fundamental operations on a map are

put(key, value)

which adds a new association to the map linking key and value, and

get(key)

which returns the value associated with key.

The Java Collections Framework does export a construct with the generic name of
Map. That structure, however, is not a class but an interface. As such, it merely defines
the operations that a map must implement. When you want to make use of the
functionality provided by maps, you have to choose one of the specific classes that
implement the Map interface. The Java Collections Framework includes several of these,

Figure 1. An array-based model of a dictionary

a

aah

aardvark

aardwolf

The first letter of the English alphabet.

To exclaim in amazement, joy, or surprise.

A large burrowing nocturnal African mammal.

A maned striped mammal of southern Africa.

zymogram

zymosan

An electrophoretic strip.

An insoluble fraction of yeast cells.

0

1

2

3

87217

.

.

.

87218

words definitions

Source: Webster’s Ninth Collegiate Dictionary, 1983!

 – 6 –

but by far the most common is the HashMap class, which implements the map operations
using a highly efficient and very clever strategy called a hash table. The most common
operations on the HashMap class appear in Figure 2.

As with the ArrayList class, the HashMap class uses the universal Object class for the
values that it stores. As a result, you need to use similar strategies when storing and
retrieving values from a HashMap. In particular:

• When you retrieve a value from a HashMap using get, you generally need to use a type

cast to convert it to a more specific type.
• If you want to use primitive types either as keys or as values, you need to use the

wrapper classes introduced in Chapter 7. We’ll see an example of this strategy in the
class problem.

The only method from Figure 2 that requires additional explanation is the keySet

method at the end of the list. This method returns the set of all keys in the HashMap,
which makes it possible to determine what keys are defined. Unfortunately, it does so by
using the Set interface, which is another part of the Java Collections Framework that lies
beyond the scope of this course. For the time being, we will use that method only in the
context of the following idiom, which iterates through all the keys in a HashMap:

for (Iterator i = map.keySet().iterator(); i.hasNext();) {
 type key = (type) i.next();
 . . . code to work with the key . . .
}

A simple example of this idiom is the following code, which displays all the key value
pairs in a HashMap called dictionary in which the keys and values are both strings.

for (Iterator i = dictionary.keySet().iterator(); i.hasNext();)
{
 String key = (String) i.next();
 String value = (String) dictionary.get(key);
 println(key + ": " + value);
}

Figure 2. Common methods in the HashMap class
HashMap()

Creates a new HashMap with no entries.
void put(Object key, Object value)

Adds an association between key and value, replacing any previous association for key.
Object get(Object key)

Returns the current association for key, or null if none exists. The result usually requires a cast.
void remove(Object key)

Removes the current association for key, if any.
boolean containsKey(Object key)

Returns true if the map contains an association for key.
int size()

Returns the number of key/value pairs in the HashMap.
Set keySet()

Returns a set of all the keys in the HashMap.

 – 7 –

Trigraph frequencies

Now, of all words in the language, the is most usual; let us see,
therefore, whether there are not repetitions of any three characters,
in the same order. . .

—Edgar Allan Poe, The Gold Bug,1843

We have seen a program that computed the frequency of letters, which is useful in
decoding a letter-substitution cipher. As Poe’s observation from The Gold Bug indicates,
it is also useful to look at the digraph and trigraph frequencies, the number of times
two or three letters appear together. In English, for example, the digraph "th" is very
common, because it occurs in so many common words such as the and this. Poe’s
detective from The Gold Bug observes that "the" is itself the most common trigraph, and
uses that fact to decode a message.

The program TrigraphFrequency.java reads a file of text and displays a table of the
trigraph frequencies that occur within it. For example, given the same cryptogram as
before,

UTK UR VAKGK LKT NG HKTNBG VU VAK UVAKE;
QTF GU UR VAKGK. MANIA NG VAK TQVBEQO LQT,
QTF MANIA VAK GXNENV? MAU FKINXAKEG VAKL?
-- GAQZKGXKQEK, IULKFY UR KEEUEG

the trigraph frequencies are given in the following table:

AKE → 2
AKG → 2
AKL → 1
ANI → 2
AQZ → 1
BEQ → 1
EEU → 1
ENV → 1
EQO → 1
EUE → 1

FKI → 1
GAQ → 1
GXK → 1
GXN → 1
HKT → 1
INX → 1
IUL → 1
KEE → 1
KEG → 1
KFY → 1

KGK → 2
KGX → 1
KIN → 1
KQE → 1
KTN → 1
LKF → 1
LKT → 1
LQT → 1
MAN → 2
MAU → 1

NBG → 1
NEN → 1
NIA → 2
NXA → 1
QEK → 1
QTF → 2
QVB → 1
QZK → 1
TNB → 1
TQV → 1

UEG → 1
ULK → 1
UTK → 1
UVA → 1
VAK → 7
VBE → 1
XAK → 1
XKQ → 1
XNE → 1
ZKG → 1

The most common digraph in this example is "VAK", which occurs seven times, and does
indeed correspond to "THE".

For another example, the console program FlightPlanner.java reads in a file
containing flight destinations from various cities, and then allows the user to plan a
round-trip flight route. Here is a sample run of the program:

 – 8 –

The flights come from a data file named flights.txt with the following format:

• Each line consists of a pair of cities separated by an arrow indicated by the two-

character combination ->, as in
New York -> Anchorage

• The file may contain blank lines for readability
The entire data file used to produce this sample run is as follows:

 – 9 –

San Jose -> San Francisco
San Jose -> Anchorage

New York -> Anchorage
New York -> San Jose
New York -> San Francisco
New York -> Honolulu

Anchorage -> New York
Anchorage -> San Jose

Honolulu -> New York
Honolulu -> San Francisco

Denver -> San Jose

San Francisco -> New York
San Francisco -> Honolulu
San Francisco -> Denver

The program runs by:

• Reading in the flight information from the file flights.txt.
• Displaying the complete list of cities.
• Allowing the user to select a city from which to start.
• In a loop, printing out all the destinations from the current city, and prompting the user

to select the next city.
• Once the user has selected a round-trip route (i.e., once the user has returned to the

starting city), exiting from the loop and print out the route that was chosen.

