
Math 121: Introduction to Computing Handout #20a

Answers to Machine Representation Problem Set

1. Assembly- to machine-language translation

Assembly-language version Machine-language version
start: INPUT n
 LOAD #0
 STORE total
 LOAD #1
loop: STORE i
 LOAD n
 SUB i
 JNEG done
 LOAD total
 ADD i
 ADD i
 SUB #1
 STORE total
 LOAD i
 ADD #1
 JUMP loop
done: OUTPUT total
 HALT

i: 0
n: 0
total: 0

(01) +120
(02) +323
(03) +421
(04) +322
(05) +419
(06) +320
(07) +619
(08) +917
(09) +321
(10) +519
(11) +519
(12) +622
(13) +421
(14) +319
(15) +522
(16) +705
(17) +221
(18) +700

(19) +000
(20) +000
(21) +000

(22) +001
(23) +000

} These two values

can be reversed

What output does this program produce
if you enter 5 as the input value? 25

What value does this program compute
in general? the square of the input number

 – 2 –

2. MiniSim coding
Write a MiniSim program remainder.asm that requests two numbers from the user
(which you may assume are both positive) and then computes the remainder of the first
divided by the second. The problem, of course, is that MiniSim has only ADD and SUB
instructions, and doesn’t support multiplication and division. On the other hand, you can
easily simulate the process of division by repeatedly subtracting the second number from
the first until the result is negative. The remainder is the value immediately before the
last subtraction.

Answer to problem 2

/*
 * File: remainder.asm
 * -------------------
 * This program computes the remainder of two input numbers.
 * The implementation simulates the following Java program:
 *
 * public void run() {
 * int n1 = readInt(" ? ");
 * int n2 = readInt(" ? ");
 * while (n1 - n2 >= 0) {
 * n1 -= n2;
 * }
 * println(n1);
 * }
 */

start: INPUT n1
 INPUT n2
loop: LOAD n1
 SUB n2
 JNEG done
 STORE n1
 JUMP loop
done: OUTPUT n1
 HALT

/* Variables */

n1: 0
n2: 0

 – 3 –

3a)
Suppose that the class IndexList has been defined as follows:

public class IndexList {

 public IndexList(int n) {
 list = new int[n];
 for (int i = 0; i < n; i++) {
 list[i] = i;
 }
 }

 private int[] list;

}

and that the method testIndexList looks like this:

public void testIndexList() {
 IndexList list1 = new IndexList(3);
 IndexList list2 = list1;
}

←Diagram at this point

Using the heap-stack diagrams in Chapter 7 as a model, draw a diagram showing how
memory is allocated just before testIndexList returns. You need not include explicit
addresses in your diagram, but must indicate—either through addresses or arrows—
where reference values point in memory. Your diagram should also include the names of
any variables or fields.

1020

1040

1040

3

0

heap

FFC0102011

htgnel

]1[

]0[tsil

stack

FFBC10202

2]2[

tsil

tsil

tsil

tsil

tsil

If you use arrows for this problem, the diagram would appear as follows:

3

0

heap

1

stack

2

htgnel

]1[

]0[tsil

]2[

tsil

tsil

tsil

1

2tsil

tsil

 – 4 –

3b)
Suppose that the class Domino has been defined as follows:

public class Domino {

 public Domino(int p1, int p2) {
 leftPips = p1;
 rightPips = p2;
 }

 private int leftPips, rightPips;
}

and that the method testDominos looks like this:

public void testDominos() {
 Dominos[] dominos = new Dominos[2];
 dominos[0] = new Domino(1, 3);
 dominos[1] = new Domino(2, 6);
}

←Diagram at this point

1000

1

3

1020

2

6

1040

2

1000

heap

FFC01040sonimod

spiPtfel

spiPthgir

spiPtfel

spiPthgir

1020

htgnel

]1[sonimod

]0[sonimod

stack

If you use arrows for this problem, the diagram would appear as follows:

1

3

2

6

2

heap

sonimod

spiPtfel

spiPthgir

spiPtfel

spiPthgir

htgnel

]1[sonimod

]0[sonimod

stack

FFC0

