

– 4 –

Math 121: Introduction to Computing
 Handout #20a

Answers to Machine Representation Problem Set

1. Assembly- to machine-language translation

	Assembly-language version
	Machine-language version

	start: INPUT n

 LOAD #0

 STORE total

 LOAD #1

loop: STORE i

 LOAD n

 SUB i

 JNEG done

 LOAD total

 ADD i

 ADD i

 SUB #1

 STORE total

 LOAD i

 ADD #1

 JUMP loop

done: OUTPUT total

 HALT

i: 0

n: 0

total: 0

	(01) +120

(02) +323

(03) +421

(04) +322

(05) +419

(06) +320

(07) +619

(08) +917

(09) +321

(10) +519

(11) +519

(12) +622

(13) +421

(14) +319

(15) +522

(16) +705

(17) +221

(18) +700

(19) +000

(20) +000

(21) +000

(22) +001

(23) +000

	}[image: image1.wmf]

	
	
	

	What output does this program produce if you enter 5 as the input value?
	25

	
	
	

	What value does this program compute in general?
	the square of the input number

2. MiniSim coding

Write a MiniSim program remainder.asm that requests two numbers from the user (which you may assume are both positive) and then computes the remainder of the first divided by the second. The problem, of course, is that MiniSim has only ADD and SUB instructions, and doesn’t support multiplication and division. On the other hand, you can easily simulate the process of division by repeatedly subtracting the second number from the first until the result is negative. The remainder is the value immediately before the last subtraction.

Answer to problem 2

	
	/*

 * File: remainder.asm

 * -------------------

 * This program computes the remainder of two input numbers.

 * The implementation simulates the following Java program:

 *

 * public void run() {

 * int n1 = readInt(" ? ");

 * int n2 = readInt(" ? ");

 * while (n1 - n2 >= 0) {

 * n1 -= n2;

 * }

 * println(n1);

 * }

 */

start: INPUT n1

 INPUT n2

loop: LOAD n1

 SUB n2

 JNEG done

 STORE n1

 JUMP loop

done: OUTPUT n1

 HALT

/* Variables */

n1: 0

n2: 0
	

3a)

Suppose that the class IndexList has been defined as follows:

public class IndexList {

 public IndexList(int n) {

 list = new int[n];

 for (int i = 0; i < n; i++) {

 list[i] = i;

 }

 }

 private int[] list;

}

and that the method testIndexList looks like this:

	public void testIndexList() {

 IndexList list1 = new IndexList(3);

 IndexList list2 = list1;

}
	Diagram at this point

Using the heap-stack diagrams in Chapter 7 as a model, draw a diagram showing how memory is allocated just before testIndexList returns. You need not include explicit addresses in your diagram, but must indicate—either through addresses or arrows—where reference values point in memory. Your diagram should also include the names of any variables or fields.

[image: image2.wmf]
If you use arrows for this problem, the diagram would appear as follows:

[image: image3.wmf]
3b)

Suppose that the class Domino has been defined as follows:

public class Domino {

 public Domino(int p1, int p2) {

 leftPips = p1;

 rightPips = p2;

 }

 private int leftPips, rightPips;

}

and that the method testDominos looks like this:

	public void testDominos() {

 Dominos[] dominos = new Dominos[2];

 dominos[0] = new Domino(1, 3);

 dominos[1] = new Domino(2, 6);

}
	Diagram at this point

[image: image4.wmf]
If you use arrows for this problem, the diagram would appear as follows:

[image: image5.wmf]

