
Math 121: Introduction to Computing Handout #20

Machine Representation Problem Set

This problem set is meant to help make sure that you understand how objects are
represented in memory well enough to maintain an accurate conceptual model of how
Java objects behave. As with the parameter problem set, these exercises are designed for
pencil-and-paper solution. You are free to use the computer to check your work, but in
principle you should be able to solve them without electronic assistance.

1. Assembly- to machine-language translation
Translate the following assembly-language program into its numeric machine-language
equivalent, showing the contents of all memory addresses loaded by the program:

Assembly-language version Machine-language version
start: INPUT n
 LOAD #0
 STORE total
 LOAD #1
loop: STORE i
 LOAD n
 SUB i
 JNEG done
 LOAD total
 ADD i
 ADD i
 SUB #1
 STORE total
 LOAD i
 ADD #1
 JUMP loop
done: OUTPUT total
 HALT

i: 0
n: 0
total: 0

What output does this program produce
if you enter 5 as the input value?

What value does this program compute
in general?

 – 2 –

2. MiniSim coding
Write a MiniSim program remainder.asm that requests two numbers from the user
(which you may assume are both positive) and then computes the remainder of the first
divided by the second. The problem, of course, is that MiniSim has only ADD and SUB
instructions, and doesn’t support multiplication and division. On the other hand, you can
easily simulate the process of division by repeatedly subtracting the second number from
the first until the result is negative. The remainder is the value immediately before the
last subtraction.

Here are three independent sample runs to illustrate the operation of the program:

Answer to problem 2

3. Heap-stack diagrams
For each of programs on the two pages that follow, draw a diagram showing what values
are stored on the heap and the stack at the specified point in the execution

 – 3 –

3a)
Suppose that the class IndexList has been defined as follows:

public class IndexList {

 public IndexList(int n) {
 list = new int[n];
 for (int i = 0; i < n; i++) {
 list[i] = i;
 }
 }

 private int[] list;

}

and that the method testIndexList looks like this:

public void testIndexList() {
 IndexList list1 = new IndexList(3);
 IndexList list2 = list1;
}

←Diagram at this point

Using the heap-stack diagrams in Chapter 7 as a model, draw a diagram showing how
memory is allocated just before testIndexList returns. You need not include explicit
addresses in your diagram, but must indicate—either through addresses or arrows—
where reference values point in memory. Your diagram should also include the names of
any variables or fields.

heap stack

 – 4 –

3b)
Suppose that the class Domino has been defined as follows:

public class Domino {

 public Domino(int p1, int p2) {
 leftPips = p1;
 rightPips = p2;
 }

 private int leftPips, rightPips;
}

and that the method testDominos looks like this:

public void testDominos() {
 Dominos[] dominos = new Dominos[2];
 dominos[0] = new Domino(1, 3);
 dominos[1] = new Domino(2, 6);
}

←Diagram at this point

Using the heap-stack diagrams in Chapter 7 as a model, draw a diagram showing how
memory is allocated just before testDominos returns. You need not include explicit
addresses in your diagram, but must indicate—either through addresses or arrows—
where reference values point in memory. Your diagram should also include the names of
any variables or fields.

heap stack

