
Math 121: Introduction to Computing Handout #19

Introduction to MiniSim
A Simple von Neumann Machine

Programming languages—like C, C++, Java, or even Karel—are called high-level

languages because they allow you to express algorithmic processes at a high level of
abstraction. The advantage of such languages is that they enable you to focus on the
concepts of algorithmic design and problem solving rather than the nitty-gritty details of
computer architecture. At the same time, it is often useful to understand how computers
work on a more detailed level. For one thing, learning about the internal structure of a
computer helps to demystify its operation, which in turn makes computing more
accessible. For another, learning about the structure of a typical machine gives you
additional insight and intuition into how certain features of high-level languages—such
as the concepts of arrays and pointers—actually work.

As useful as it is to know something about the architecture of the underlying machine,
it isn’t feasible to introduce these concepts in the context of a highly sophisticated
machine like the PC or the Macintosh. The structure of any modern computer is much
too complex to cover in an introductory course. It is therefore traditional to introduce the
concepts of machine architecture using a hypothetical machine. This handout describes
MiniSim, a very simple machine that is nonetheless powerful enough to illustrate the
basic concepts of digital computer architecture.

Overview of the MiniSim architecture

Although modern computers differ significantly in their internal architecture, most
computer systems in use today share the same basic organizational structure. The typical
computer consists of a central processing unit (CPU), some amount of memory, and some
connection to input/output (I/O) devices so that the machine can communicate with the
outside world. These components are connected by a bus so that data can flow between
the separate units, as shown in the diagram below:

bus

CPU

memory I/O devices

..

.

.

.

.

.

.

.

.

.

.

.

The memory of a computer system is typically broken down into individual memory
cells of a fixed size. Each individual cell is called a memory word and is identified by a
numeric address. MiniSim has 100 words of memory, numbered from address 00 to 99.
To make it easier to catch various common programming errors, MiniSim makes it illegal

 – 2 –

to use address 00, which means that the usable memory of the machine actually begins at
address 01.

Each of MiniSim’s memory words contains a integer consisting of three decimal digits

plus a sign, so that the range of each memory word is –999 to +999. The following
diagram therefore shows a possible configuration of MiniSim’s memory, though
displaying only a few words:

+ 3 5 00 1

+ 5 5 10 2

+ 4 5 00 3

- 0 4 25 0

+ 0 6 55 1

+ 0 0 09 9

In the diagram, the word at address 01 contains the number +350, the word at address 50
contains the number –42, and so forth.

Even though MiniSim memory locations always contain three-digit signed integers, it
is important to recognize that you can interpret those integers in different ways. For
example, the value 65 in location 51 might be a decimal number or the ASCII character
code for the character 'A'. Each of these values has the internal representation 65. The
correct interpretation depends on how the value is used.

In addition to the addressable memory, most computers include several memory cells
that live in faster memory inside the processor. These special memory cells are generally
called registers. MiniSim has the following five registers:

AC the accumulator
PC the program counter
IR the instruction register
XR the index register
SP the stack pointer

Each of these registers has is own purpose, to be introduced in context.

 – 3 –

The stored programming concept
In the earliest days of computing, programs were
usually represented in a form that made them entirely
separate from data. Typically, instructions were
punched on paper tape and then fed into the machine,
which would execute the instructions in sequence. If
you wanted to change the program, you had to punch a
new tape. One of the most important characteristics of
modern computers is that the same memory words
used to store data value can also be used to represent
instructions. Machines that store their instructions
internally as data are called von Neumann machines,
after the mathematician John von Neumann (1903-
1957), shown here with the machine he developed at the Institute for Advanced Study in
Princeton.

In order to represent instructions inside a machine, there needs to be some encoding

scheme that allows the hardware to interpret the contents of some memory location as an
executable instruction. In the MiniSim machine, instructions are encoded in two separate
parts. The first digit of the memory word—along with the sign—indicates what
instruction is being performed, and the last two digits indicate an address in memory.
Thus, an instruction in MiniSim is logically divided into the following fields:

operation code address field

For example, if MiniSim were to execute the value in address 01 above as an instruction,
it would take the value +350 and breaks it down into two components:

3 5 0+

The first digit—along with the sign if necessary—specifies the code for the particular
instruction to be performed. The last two digits specify the address of the word in
memory on which the operation will be performed. In this case, the +3 specifies an
instruction called LOAD, and the LOAD instruction will operate on the word at address 50.

 – 4 –

Simple instructions by example
You can write a wide range of programs using just a few simple operations. To

illustrate the operation of MiniSim, let’s start with the following set of instructions:

code name operation
+1 INPUT xx Reads a line containing an integer value from the

terminal and stores it in memory address xx.
+2 OUTPUT xx Displays the value in memory address xx.
+3 LOAD xx Loads the AC with the value in the memory address xx.

The contents of the memory word are not changed.
+4 STORE xx Stores the value in the AC into memory address xx. The

value in the AC remains unchanged
+5 ADD xx Adds the value in memory address xx to the contents of

the AC. The result is stored in the AC.
+6 SUB xx Subtracts the value in memory address xx from the AC.

As with ADD, the result is stored in the AC.
+7 HALT Halts the simulated machine.

This set is sufficient to write a simple program that reads two numbers from the user,
adds them together, and then displays the result. The code for the MiniSim version of the
add-two-numbers program is shown in Figure 1. In this figure, the code on the left shows
the addresses in memory where the instructions reside and the actual numeric values of
the instructions. Instructions written in their numeric form represent the machine
language version of the program. The equivalent code on the right is the assembly
language version, which uses symbolic instruction names in place of the numeric
operation codes. The assembly language form is much easier for humans to read, but it
can easily be translated into its machine language counterpart, and vice versa.

The first line of the program is the instruction +150, which has the assembly language
representation

INPUT 50

When the MiniSim machine encounters this instruction, it types out a question mark
and then waits for the user to enter a number on the keyboard. When the user hits the
RETURN key to signal the end of the number, the MiniSim machine stores that value in
location 50. The next instruction does the same thing for the second input value, storing

Figure 1. Program to add two integers

 (01) +150 INPUT 50
 (02) +151 INPUT 51
 (03) +350 LOAD 50
 (04) +551 ADD 51
 (05) +452 STORE 52
 (06) +252 OUTPUT 52
 (07) +700 HALT

Figure 1. Program to add two integers

 (01) +150 INPUT 50
 (02) +151 INPUT 51
 (03) +350 LOAD 50
 (04) +551 ADD 51
 (05) +452 STORE 52
 (06) +252 OUTPUT 52
 (07) +700 HALT

 – 5 –

the result in location 51. In this program, memory locations 50 and 51 are used to hold
data values, which are being interpreted here as integers. Locations used to hold data that
changes over the course of the program are called variables.

At this point in the execution of the program, the variables in location 50 and 51
contain the two input values. The next step in the process is to add the number together.
In MiniSim, all arithmetic must be done in the AC register. Thus, to add the two numbers,
the program must first load one of the values into the AC, add the second, and then store
the result back into memory. These operations are accomplished using the instructions

LOAD 50
ADD 51
STORE 52

From here, all the program needs to do is use an OUTPUT instruction to display the
result in location 52. The program then moves on to the HALT instruction at location 7,
which stops its execution. At the end of the program, the display screen might look like
this:

The instruction cycle

By convention, all MiniSim programs begin at address 01. To make sure that
instructions are executed in their proper order, MiniSim—like any machine that uses the
von Neumann architecture—devotes an internal register that keeps track of the next
instruction in sequence. That register is called the program counter or PC. When the
program is started, the PC is set to 01 to indicate that the first instruction to be executed
comes from address 01. MiniSim uses another internal register, called the instruction
register or IR, to hold the actual three-digit instruction word.

For each instruction, MiniSim executes the following instruction cycle:

1. Fetch the current instruction. In this phase of the instruction, MiniSim finds the word

from the memory address specified by the PC and copies its value into the IR.
2. Increment the program counter. Once the current instruction has been copied into the

IR, MiniSim adds one to the PC so that it indicates the next instruction in sequence.
3. Decode the instruction in the instruction register. The value copied into the IR is a

three-digit integer. To use it as an instruction, MiniSim must divide the instruction
word into its operation-code and address-field components.

4. Execute the instruction. Once the operation code and address field have been
identified, the MiniSim processor must carry out the steps necessary to perform the
indicated action.

This cycle is repeated until a HALT instruction is executed or an error occurs.

 – 6 –

Controlling the order of execution

Although the instructions you have seen so far make it possible to write many simple
programs, they do not allow you to change the order in which instructions are executed.
To do so, you need the following additional instructions:

code name operation
+7 JUMP xx Sets the PC to xx, meaning that the next instruction will

be taken from that memory location.
+8 JZERO xx If the AC contains zero, this instruction transfers control

to address xx, just like a JUMP instruction. If the value
in the AC is nonzero, the program continues with the
next instruction in sequence.

+9 JNEG xx This instruction is like JZERO, except that it jumps to xx
only if the value in the AC is negative.

Note that the operation code for JUMP is the same as that for HALT. MiniSim can

distinguish the two instructions because the HALT instruction does not need an address
field. Thus, MiniSim interprets the value +700 as a HALT instruction and any other +7
operation as a JUMP.

As an illustration of how these control instructions work, suppose that you want to write a
program that adds a series of numbers, where the input is terminated by a zero. In
English, you can express the logic of such a program as the following series of steps:

1. Designate a memory location to record the total so far. Call that location total.
2. Designate a second memory location called value to hold each value as it appears.
3. Initialize total to zero.
4. Use the INPUT instruction to read a number into value.
5. If value is zero, output the value in total and halt.
6. Add the current value to the contents of total.
7. Go back to step 4 to get another number.

In MiniSim, you can easily write a simple program to execute this series of steps. That
program appears in its machine language version in Figure 2, and in the equivalent
assembly language program in Figure 3. The assembly language version of the program,
which is stored in the file addlist.asm, illustrates several new features of the MiniSim
assembler, which translates the programs you write into the internal machine-language
code. The first is the use of comments, which are annotations written for human readers
of the program. Comments start with the characters /* and end with the characters */, just
as they do in Karel, C, C++, or Java.

 – 7 –

Figure 2. Program to add a list of integers in MiniSim (machine language version)

(01) +312
(02) +413
(03) +114
(04) +314
(05) +810
(06) +313
(07) +514
(08) +413
(09) +703
(10) +213
(11) +700
(12) +000 This location is used to hold the constant 0.
(13) +000 This location is used to keep track of the running total.
(14) +000 This location is used to hold each input value.

Labels

The second feature introduced in Figure 3 is the use of symbolic names—such as
start, loop, done, total, n, and zero—to refer to specific addresses in the program.
In assembly language, such names are known as labels. Labels in MiniSim are defined
by writing a name followed by a colon, which defines that name as being equal to the
current location in memory. For example, the first line defines the symbol start to be 1,
since this instruction is being placed in location 1. Similarly, the symbol loop will have

Figure 3. Program to add a list of integers in MiniSim (assembly language version)

/*
 * File: addlist.asm
 * -----------------
 * This program adds a list of integers. The user signals the
 * end of the input by entering the value 0.
 */

start: LOAD zero
 STORE total
loop: INPUT n
 LOAD n
 JZERO done
 LOAD total
 ADD n
 STORE total
 JUMP loop
done: OUTPUT total
 HALT

/* Constants */

zero: 0

/* Variables */

total: 0
n: 0

 – 8 –

the value 3. Labels may be used before they are defined; when the actual definition
appears, the appropriate value will be substituted back into any instructions that use it.
Thus, when MiniSim gets around to the line labeled zero at memory location 12, it not
only defines the label zero to have the value 12, but also goes back and fills in 12 as the
address part of the instruction

LOAD zero

in memory location 1. Because LOAD has the operation code +3, the value of memory
location 1 after loading the assembly language version of the program will be +312, just
as it is shown in the machine language version.

Constants

The final important concept to take from Figure 3 is how to specify constant values in
an MiniSim program. In the English version of the program, the first actual operation
after giving names to the data values is to set the variable total to zero. To do so, you
could not simply write

LOAD 0
STORE total

The LOAD instruction here will try to load the value in address 0, rather than the integer
value 0, which is what the program needs. To work with a constant integer value, you
need to put that constant in a memory word and then specify its address in the appropriate
instruction. Here, for example, the instruction

LOAD zero

loads from the address corresponding to the label zero, which is defined by the program
to contain the value 0, as follows:

zero: 0

Because it is cumbersome to define all constants by putting them in a memory word

and then using that address in other instructions, the MiniSim assembler allows you to
specify constants by writing a number sign (#) before an integer value, as in

LOAD #0

What the assembler does when it encounters the number sign is

1. Find some unused address at the end of the program.
2. Put the constant value into that address.
3. Use the address of the constant in the instruction that contained the constant.

The # syntax therefore has exactly the same effect as storing the constant in a memory
location and using that location’s address. The advantage of using the # form is that the
resulting program is easier to read.

 – 9 –

Playing computer
To get a better sense of how von Neumann machines work, it is important to go

through the operation of a program on your own to make sure you can execute all the
machine instructions. As an example, follow through the logic of the addlist.asm
program from Figure 3 using the input values 1, 2, 3, 4, and 0. The output of that
program would look like this:

The important thing here is understanding how the instructions in the program
accomplish the task.

Using the MiniSim applet
If you want to play with the ideas from MiniSim more actively, follow the link from my
home page. This applet allows you to create and run programs for the MiniSim machine.

Examples

1. MiniSim program to count backward from 10 to 0

/*
 * File: countdown.asm
 * -------------------
 * This program counts backwards from 10 to 0
 */

start: LOAD #10
loop: STORE i
 OUTPUT i
 SUB #1
 JNEG done
 JUMP loop
done: HALT

i: 0

2. The Fibonacci sequence
In the Fibonacci sequence, the first two terms are 0 and 1 and every subsequent term is
the sum of the preceding two. If you number the terms beginning at 0, the first few terms
of the Fibonacci sequence are F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,… A
MiniSim program that reads in an integer n and writes out the values of the Fibonacci
sequence from F0 through Fn can simulate the operation of the following Java method:

 – 10 –

public void run() {
 int n = readInt(" ? ");
 int t1 = 0;
 int t2 = 1;
 for (int i = 0; i < n; i++) {
 println(t1);
 t3 = t1 + t2;
 t1 = t2;
 t2 = t3;
 }
}

Here is the MiniSim program:

/*
 * File: Fibonacci.asm
 * -------------------
 * This program writes out the first n Fibonacci numbers.
 */

start: INPUT n /* n = readInt(" / "); */
 LOAD #0 /* t1 = 0; */
 STORE t1
 STORE i /* i = 0; */
 LOAD #1
 STORE t2 /* t2 = 1; */
loop: LOAD n /* if (i == n) */
 SUB i
 JZERO done /* exit the loop */
 OUTPUT t1 /* println(t1); */
 LOAD t1 /* t3 = t1 + t2; */
 ADD t2
 STORE t3
 LOAD t2 /* t1 = t2; */
 STORE t1
 LOAD t3 /* t2 = t3; */
 STORE t2
 LOAD i /* i++ */
 ADD #1
 STORE i
 JUMP loop /* go back to start of loop */
done: HALT

n: 0
i: 0
t1: 0
t2: 0
t3: 0

 – 11 –

The program, for example, generates this sample run:

