
Math 121: Introduction to Computing Handout #17

The Demo Programs in Folder Assignment4

Strings and Ciphers

Cryptography, derived from the Greek word κρυπτοσ meaning hidden, is the science of
creating and decoding secret messages whose meaning cannot be understood by others
who might intercept the message. One of the most important episodes in the history of
cryptography was the breaking of the German “Engima” code during World War II. The
breaking of Enigma not only was essential to the Allied victory in the Battle of the
Atlantic, but also was one of the first applications of digital computers. And while the
Enigma code itself is beyond the scope of this course, cryptography turns out to be an
ideal domain for talking about string operations.

Two of the demo programs in the folder for Assignment 4 are simple encryption and
decryption programs for ciphers less sophisticated than Enigma. To read them, one need
to know some terminology. In cryptography, the message you are trying to send is called
the plaintext; the message that you actually send is called the ciphertext. Unless your
adversaries know the secret of the encoding system, which is usually embodied in some
privileged piece of information called a key, intercepting the ciphertext should not enable
them to discover the original plaintext version of the message. On the other hand, the
intended recipient, who is in possession of the key, can easily translate the ciphertext
back into its plaintext counterpart.

Caesar ciphers
One of the earliest documented uses of ciphers is by Julius Caesar. In his De Vita
Caesarum, the Roman historian Suetonius describes Caesar’s encryption system like this:

If he had anything confidential to say, he wrote it in cipher, that is, by so changing
the order of the letters of the alphabet, that not a word could be made out. If
anyone wishes to decipher these, and get at their meaning, he must substitute the
fourth letter of the alphabet, namely D, for A, and so with the others.

Even today, the technique of encoding a message by shifting letters a certain distance in
the alphabet is called a Caesar cipher. According to the passage from Suetonius, each
letter is shifted three letters ahead in the alphabet. For example, if Caesar had had time to
translate the final words Shakespeare gives him, ET TU BRUTE would have come out as
HW WX EUXWH, because E gets moved three letters ahead to H, T gets moved three to W,
and so on. Letters that get advanced past the end of the alphabet wrap around back to the
beginning, so that X would become A, Y would become B, and Z would become C.

Caesar ciphers have been used in modern times as well. The “secret decoder rings”
that used to be given away as premiums in cereal boxes were typically based on the
Caesar cipher principle. In early electronic bulletin board systems, users often disguised
the content of postings by employing a mode called ROT13, in which all letters were
cycled forward 13 positions in the alphabet. And the fact that the name of the HAL
computer in Arthur C. Clarke’s 2001 is a one-step Caesar cipher of IBM has caused a
certain amount of speculation over the years.

 – 2 –

The CaesarCipher program encodes or decodes a message using a Caesar cipher. It

reads a numeric key and a plaintext message from the user and then displays the
ciphertext message that results when each of the original letters is shifted the number of
letter positions given by the key. A sample run of the program looks like this:

For the Caesar cipher, decryption does not require a separate program as long as the
implementation is able to accept a negative key, as follows:

Letter-substitution ciphers
Although they are certainly simple, Caesar ciphers are also extremely easy to break.
There are, after all, only 25 nontrivial Caesar ciphers for English text. If you want to
break a Caesar cipher, all you have to do is try each of the 25 possibilities and see which
one translates the ciphertext message into something readable. A somewhat better
scheme is to allow each letter in the plaintext message to be represented by an arbitrary
letter instead of one a fixed distance from the original. In this case, the key for the
encoding operation is a translation table that shows what each of the 26 plaintext letters
becomes in the ciphertext. Such a coding scheme is called a letter-substitution cipher.
The key in such a cipher can be represented as a 26-character string, which shows the
mapping for each character, as shown in the following example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Q W E R T Y U I O P A S D F G H J K L Z X C V B N M

Letter-substitution ciphers have been used for many, many years. In the 15th century,
an Arabic encyclopedia included a section on cryptography describing various methods
for creating ciphers as well as techniques for breaking them. More importantly, this same
manuscript includes the first instance of a cipher in which several different coded
symbols can stand for the same plaintext character. Codes in which each plaintext letter
maps into a single ciphertext equivalent are called monoalphabetic ciphers. More
complex codes—like the Enigma machine—in which the representation for a character
changes over the course of the encryption process are called polyalphabetic ciphers.
�

The LetterSubstitutuionCipher program implements this more general letter-
substitution cipher. The program asks the user to enter a 26-letter key and the plaintext

 – 3 –

message. It then displays the ciphertext and, to ensure that the encryption is working,
what you get if you decrypt the ciphertext using the same key:

Scrabble scoring
In most word games, each letter in a word is scored according to its point value, which is
inversely proportional to its frequency in English words. In Scrabble, the points are
allocated as follows:

 Points Letters
 1 A, E, I, L, N, O, R, S, T, U
 2 D, G
 3 B, C, M, P
 4 F, H, V, W, Y
 5 K
 8 J, X
 10 Q, Z

For example, the Scrabble word FARM is worth 9 points: 4 for the F, 1 each for the A and
the R, and 3 for the M. The ConsoleProgram ScrabbleScore reads in words and prints
out their score in Scrabble, not counting any of the other bonuses that occur in the game.
The program ignores any characters other than uppercase letters in computing the score.
In particular, lowercase letters are assumed to represent blank tiles, which can stand for
any letter but which have a score of 0.

Adding commas to numeric strings
When large numbers are written out on paper, it is traditional—at least in the United
States—to use commas to separate the digits into groups of three. For example, the
number one million is usually written in the following form:

1,000,000

To make it easier for programmers to display numbers in this fashion, the program
AddCommas implements a method

private String addCommasToNumericString(String digits)

that takes a string of decimal digits representing a number and returns the string formed
by inserting commas at every third position, starting on the right. For example, a sample
run looks something like:

 – 4 –

Deleting characters from a string
The program RemoveChar implements a method

public String removeAllOccurrences(String str, char ch)

that removes all occurrences of the character ch from the string str. For example:

removeAllOccurrences("This is a test", 't') returns "This is a es"
removeAllOccurrences("Summer is here!", 'e') returns "Summr is hr"
removeAllOccurrences("---0---", '-') returns "0"

Displaying the lines of a file in reverse order
The program ReverseFile does this.

Counting the words in a file
The program WordCount reads a file and reports how many lines, words, and characters
appear in it. Suppose, for example, that the file lear.txt contains the following passage
from Shakespeare’s King Lear, which might serve as a guide to how government officials
responded to the devastation of Hurricane Katrina:

Poor naked wretches, wheresoe'er you are,
That bide the pelting of this pitiless storm,
How shall your houseless heads and unfed sides,
Your loop'd and window'd raggedness, defend you
From seasons such as these? O, I have ta'en
Too little care of this!

Given this file, your program should be able to generate the following sample run:

For the purposes of this program, a word consists of a consecutive sequence of letters
and/or digits, which can be tested using the static method Character.isLetterOrDigit.
Also, the program does not try to count the characters that mark the end of a line, which
will have different values depending on the type of computer.

