
Math 121: Introduction to Computing Handout #16

Assignment 4 — Hangman

Assignment #4 is to write a program that plays the game of Hangman. This assignment
serves two purposes. First, it is designed to give you some practice writing programs that
manipulate strings and files. Second, you will have a chance to work with multiple
classes in a single application.

When it plays Hangman, the computer first selects a secret word at random from a list
built into the program. The program then prints out a row of dashes—one for each letter
in the secret word—and asks the user to guess a letter. If the user guesses a letter that is
in the word, the word is redisplayed with all instances of that letter shown in the correct
positions, along with any letters correctly guessed on previous turns. If the letter does not
appear in the word, the user is charged with an incorrect guess. The user keeps guessing
letters until either (1) the user has correctly guessed all the letters in the word or (2) the
user has made eight incorrect guesses. Two sample runs that illustrate the play of the
game are shown in Figure 1 on the next page.

When it is played by children, the real fascination (a somewhat morbid one) of Hangman
comes from the fact that incorrect guesses are recorded by drawing an evolving picture of
the user being hanged at a scaffold. For each incorrect guess, a new part of a stick-figure
body—first the head, then the body, then each arm, each leg, and finally each foot—is
added to the scaffold until the hanging is complete. For example, the three diagrams
below show the drawing after the first incorrect guess (just the head), the third (the head,
body, and left arm), and the diagram at the tragic end of a losing game:

In order to write the program that plays Hangman, you should design and test your
program in three parts. The first part consists of getting the interactive part of the game
working without any graphics at all and with a fixed set of secret words. The second part
consists of building a separate class that maintains the scaffold diagram. The final part

 – 2 –

requires you to replace the supplied version of the secret word list with one that reads
words from a file. The rest of this handout describes these three parts in more detail.

Figure 1. Two sample runs of the Hangman program (console only)

 – 3 –

Part I—Playing a console-based game
As the first part of this assignment, write a program that handles the user interaction
component of the game—everything except the graphical display. To solve the problem,
your program must be able to:

• Choose a random word to use as the secret word. That word is chosen from a word

list, as described in the following paragraph.
• Keep track of the user’s partially guessed word, which begins as a series of dashes and

is then updated as correct letters are guessed.
• Implement the basic control structure and manage the details (ask the user to guess a

letter, keep track of the number of guesses remaining, print out the various messages,
detect the end of the game, and so forth).

The only operation that is beyond your current knowledge is that of representing the list
of words from which you can choose a word at random. For the first two parts of the
assignment, you will simply make use of a class that is provided to you, called
HangmanLexicon, that provides a small list of words that will allow you to test your
program. (A lexicon is like a dictionary but does not necessarily include definitions,
making it a more appropriate name for a class that provides a list of words with no
associated meanings.) The implementation of the class you’ve been given is only a
temporary expedient to make it possible to code the rest of the assignment. In Part III,
you will replace the definition we’ve provided with one that reads a list of words from a
data file.

The strategy of creating a temporary implementation that provides enough functionality
to implement the rest of the program is a common technique in programming. Such
temporary implementations are usually called stubs. In this assignment, the starter
project comes with a stub implementation of the HangmanLexicon class, shown in Figure
2. The class contains two public methods: getWordCount(), which returns the number
of words in the lexicon, and getWord(i), which returns the word at index i. Like all
indices in Java, the value i runs from 0 to one less than the number of words.

 – 4 –

A game that used this implementation of the HangmanLexicon class would quickly
become uninteresting because there are only ten words available. Even so, it will allow
you to develop the rest of the program and then come back and improve this part later.

Part I is a string manipulation problem. The sample runs in Figure 1 should be sufficient
to illustrate the basic operation of the game, but the following points may help to clarify a
few issues:

• At the beginning of your run method, you need to create a new HangmanLexicon and

store it in an instance variable. If you extend the program to allow the user to play
multiple games, the creation of the HangmanLexicon should be performed outside the
loop that plays the game repeatedly so that this operation is performed once rather than
for every game.

• You should accept the user’s guesses in either lower or upper case, even though all
letters in the secret words are written in upper case.

• If the user guesses something other than a single letter, your program should tell the
user that the guess is illegal and accept a new guess.

Figure 2. Stub implementation of HangmanLexicon

/*
 * File: HangmanLexicon.java
 * -------------------------
 * This file contains a stub implementation of the HangmanLexicon
 * class that you will reimplement for Part III of the assignment.
 */

import acm.util.*;

public class HangmanLexicon {

/** Returns the number of words in the lexicon. */
 public int getWordCount() {
 return 10;
 }

/** Returns the word at the specified index. */
 public String getWord(int index) {
 switch (index) {
 case 0: return "BUOY";
 case 1: return "COMPUTER";
 case 2: return "CONNOISSEUR";
 case 3: return "DEHYDRATE";
 case 4: return "FUZZY";
 case 5: return "HUBBUB";
 case 6: return "KEYHOLE";
 case 7: return "QUAGMIRE";
 case 8: return "SLITHER";
 case 9: return "ZIRCON";
 default: throw new ErrorException("getWord: Illegal index");
 }
 };
}

 – 5 –

• If the user guesses a correct letter more than once, your program should simply do
nothing. Guessing an incorrect letter a second time should be counted as another
wrong guess. (In each case, these interpretations are the easiest way to handle the
situation, and your program will probably do the right thing even if you don’t think
about these cases in detail.)

Remember to finish Part I before moving on to Part II. Part II is arguably more fun, but it
is essential to develop large programs in manageable stages.

Part II—Adding graphics
For Part II, extend the program you have already written so that it now keeps track of the
Hangman graphical display. Although you might want to spice things up in your
extensions, the simple version of the final picture for the unfortunate user who has run
out of guesses looks like this:

The scaffold and the tiny bit of rope above the head are drawn before the game begins,
and then the parts are added in the following order: head, body, left arm, right arm, left
leg, right leg, left foot, right foot. Because this picture is simpler than most of the figures
you have drawn for section problems, the challenge of this part of the assignment does
not lie so much in using the acm.graphics package but rather in implementing the
separation of functions between the class that performs the console-based interaction and
the class that manages the display. That class is called HangmanCanvas and is included in
the starter project in the form of the stub implementation shown in Figure 3.

 – 6 –

Figure 3. Stub implementation of HangmanCanvas

/*
 * File: HangmanCanvas.java
 * ------------------------
 * This file keeps track of the Hangman display.
 */

import acm.graphics.*;

public class HangmanCanvas extends GCanvas {

/* Constants for the simple version of the picture (in pixels) */
 private static final int SCAFFOLD_HEIGHT = 360;
 private static final int BEAM_LENGTH = 144;
 private static final int ROPE_LENGTH = 18;
 private static final int HEAD_RADIUS = 36;
 private static final int BODY_LENGTH = 144;
 private static final int ARM_OFFSET_FROM_HEAD = 28;
 private static final int UPPER_ARM_LENGTH = 72;
 private static final int LOWER_ARM_LENGTH = 44;
 private static final int HIP_WIDTH = 36;
 private static final int LEG_LENGTH = 108;
 private static final int FOOT_LENGTH = 28;

/**
 * Resets the display so that only the scaffold appears.
 */
 public void reset() {
 /* You fill this in */
 }

/**
 * Updates the word on the screen to correspond to the current
 * state of the game. The argument string shows what letters have
 * been guessed so far; unguessed letters are indicated by hyphens.
 */
 public void displayWord(String word) {
 /* You fill this in */
 }

/**
 * Updates the display to correspond to an incorrect guess by the
 * user. Calling this method causes the next body part to appear
 * on the scaffold and adds the letter to the list of incorrect
 * guesses that appears at the bottom of the window.
 */
 public void noteIncorrectGuess(char letter) {
 /* You fill this in */
 }

}

This stub is somewhat different from the one shown earlier for HangmanLexicon. That
stub actually did something, even if it was only a part of what the complete
implementation of the class will actually do. This stub declares several named constants
that define the parameters of the picture, but doesn’t actually use them as yet. The three
methods in the stub implementation of HangmanCanvas—reset, displayWord, and

 – 7 –

noteIncorrectGuess—do absolutely nothing. This strategy, however, is also common
in programming. The fact that the class exists and exports methods means that you can
call those methods from the console-based Hangman class even before you complete their
implementation.

The first thing you should do when you begin Part II is to create a new HangmanCanvas—
in precisely the do-nothing form in which it has been given to you—and install it in the
program window next to the console. The Hangman class itself is an instance of a
ConsoleProgram, which means that the startup code in the ACM libraries has installed
an IOConsole in the window that fills the entire space. Your next task is to add a
HangmanCanvas to the program window as well. The code you need for this part is
extremely simple. First, in the instance variables section of the Hangman program, you
need to declare an instance variable for the canvas by writing

private HangmanCanvas canvas;

and then add the following lines to the beginning of your run method:

canvas = new HangmanCanvas();
setLayout(new GridLayout(1, 2));
add(canvas);
validate();

The only confusing lines in this sequence are the setLayout call and the call to
validate at the end. In the Java windowing system, the various displayed objects—
which are called components—are positioned according to the layout manager for the
component in which they are contained. Here, the line

setLayout(new GridLayout(1, 2));

changes that layout to a grid with one row and two equal columns. The console is
already installed and will therefore show up in the left column. When you add the
HangmanCanvas it will occupy the second column, which means that the console and
graphics components of the window will share equal space. The validate call is
necessary to signal the layout manager that it needs to update the layout of the window.
Doing so produces the side-by-side display shown in Figure 4. Input and output from the
Hangman program will continue to appear on the console, and any graphical objects you
add to the HangmanCanvas will appear in the canvas area on the right.

 – 8 –

Figure 4. Screen shot showing side-by-side console and canvas

You can now go through and add the calls to the methods in HangmanCanvas. Every time
you start a game, for example, you will need to call

canvas.reset();

to delete all the body parts from the canvas and redraw the scaffold. Similarly, you will
have to call displayWord and noteIncorrectGuess at the appropriate points in your
code. As of yet, nothing will actually be displayed on the canvas when you make these
calls, but your program should run just the same as it did before, freeing you to
concentrate on implementing the methods in HangmanCanvas. Note that you should not
add any more public methods to HangmanCanvas (private helper methods are fine).

The implementation of HangmanCanvas should be reasonably straightforward. Although
the sizes of the scaffold and the various body parts are given to you, their positions are
not specified, so you will have to do some arithmetic to calculate the coordinates. The
center line of the body should be centered horizontally on the screen, and the scaffold
should be displayed a bit higher than the center so that there is room underneath for two
labels: a label in a large font showing the secret word as it currently stands and a label in
a smaller font showing the incorrect guesses. Figure 5 shows how the screen appears at
the end of the tragic session in which the user was unable to guess FUZZY.

 – 9 –

Figure 5. The tragic ending of a Hangman game

Part III—Reading the lexicon from a data file
Part III of this assignment is by far the easiest and requires considerably less than half a
page of code. The only problem is that you won’t have seen the Java facilities you need
to do it until after the lecture on Friday. So the idea is to start with parts I and II and then
fill in this final detail at the end.

Your job in this part of the assignment is simply to reimplement the HangmanLexicon
class so that instead of selecting from a meager list of ten words, it reads a much larger
word list from a file. The steps involved in this part of the assignment are as follows:

1. Open the data file hangman-lexicon.txt using a BufferedReader that will allow

you to read it line by line.
2. Read the lines from the file into an ArrayList.
3. Reimplement the getWordCount and getWord methods in HangmanLexicon so that

they use the ArrayList from step 2 as the source of the words.

 – 10 –

The first two steps should be done in a constructor for HangmanLexicon, which you will
need to add to the file. The last step is simply a matter of changing the implementation of
the methods that are already there.

Note that nothing in the main program should have to change in response to this change
in the implementation of HangmanLexicon. Insulating parts of a program from changes
in other parts is a fundamental principle of good software design.

Extensions
There are many things you could do with Hangman to make it more fun. Here are some
ideas:

• You could spice up the display a little. Stick figures may be fine for elementary

school, but they seem a bit tame here.
• You could animate the pictures. Instead of having the body parts and letters merely

appear on the screen, you could have them move in from offscreen, as they often do,
for example, in PowerPoint slides.

• Once you get the basic structure working, you could expand the program to play
something like Wheel of Fortune, in which the single word is replaced by a common
phrase and in which you have to buy vowels.

• Use your imagination!

