
Math 121: Introduction to Computing Handout #14

Debugging

As soon as we started programming, we found to our surprise that it wasn’t as
easy to get programs right as we had thought. We had to discover debugging. I
can remember the exact instant when I realized that a large part of my life from
then on was going to be spent in finding mistakes in my own programs.

— Maurice Wilkes, 1949

The purpose of this lecture is twofold: to give you a sense of the philosophy of debugging
and to teach you how to use some of the practical tools that make debugging easier.

The philosophy of debugging

With method and logic one can accomplish anything.
— Agatha Christie, Poirot Investigates, 1924

Debugging is one of the most creative and intellectually challenging aspects of
programming. It can also be one of the most frustrating. To a large extent, the problems
that people face debugging programs are not so much technical as they are psychological.
To become a successful debugger, onen has to think in a different way. There is no
cookbook approach to debugging, although Nick Parlante’s rules in Figure 1 should help.
What it takes is insight, creativity, logic, and determination.

Figure 1. The Eleven Truths of Debugging

 1. Intuition and hunches are great—you just have to test them out. When a hunch
and a fact collide, the fact wins.
 2. Don’t look for complex explanations. Even the simplest omission or typo can lead
to very weird behavior. Everyone is capable producing extremely simple and obvious
errors from time to time. Look at code critically—don’t just sweep your eye over that
series of simple statements assuming that they are too simple to be wrong.
 3. The clue to what is wrong in your code is in the values of your variables and the
flow of control. Try to see what the facts are pointing to. The computer is not trying to
mislead you. Work from the facts.
 4. Be systematic. Be persistent. Don’t panic. The bug is not moving around in your
code, trying to trick or evade you. It is just sitting in one place, doing the wrong thing
in the same way every time.
 5. If you code was working a minute ago, but now it doesn’t—what was the last thing
you changed? This incredibly reliable rule of thumb is the reason your section leader
told you to test your code as you go rather than all at once.
 6. Do not change your code haphazardly trying to track down a bug. This is sort of
like a scientist who changes more than one variable at a time. It makes the observed
behavior much more difficult to interpret, and you tend to introduce new bugs.

 – 2 –

 7. If you find some wrong code which does not seem to be related to the bug you
were tracking, fix the wrong code anyway. Many times the wrong code was related to
or obscured the bug in a way you had not imagined.
 8. You should be able to explain in Sherlock Holmes style the series of facts, tests,
and deductions which led you to find a bug. Alternately, if you have a bug but can’t
pinpoint it, then you should be able to give an argument to a critical third party
detailing why each one of your procedures cannot contain the bug. One of these
arguments will contain a flaw since one of your procedures does in fact contain a bug.
Trying to construct the arguments may help you to see the flaw.
 9. Be critical of your beliefs about your code. It’s almost impossible to see a bug in a
procedure when your instinct is that the procedure is innocent. In that case, only when
the facts have proven without question that the procedure is the source of the problem
will you be able to see the bug.
10. You need to be systematic, but there is still an enormous amount of room for
beliefs, hunches, guesses, etc. Use your intuition about where the bug probably is to
direct the order that you check things in your systematic search. Check the procedures
you suspect the most first. Good instincts will come with experience.
11. Debugging depends on an objective and reasoned approach. It depends on overall
perspective and understanding of the workings of your code. Debugging code is more
mentally demanding than writing code. The longer you try to track down a bug without
success, the less perspective you tend to have. Realize when you have lost the
perspective on your code to debug. Take a break. Get some sleep. You cannot debug
when you are not seeing things clearly. Many times a programmer can spend hours late
at night hunting for a bug only to finally give up at 4:00A.M. The next day, they find
the bug in 10 minutes. What allowed them to find the bug the next day so quickly?
Maybe they just needed some sleep and time for perspective. Or maybe their
subconscious figured it out while they were asleep. In any case, the “go do something
else for a while, come back, and find the bug immediately” scenario happens too often
to be an accident.

 — Nick Parlante, Stanford University

The programming process leads the programmer through a series of tasks and roles:

Design — Architect
Coding — Engineer
Testing — Vandal
Debugging — Detective

These roles require distinct strategies and goals, and it is often difficult to shift
perspective from one to another. Beyond understanding the multiplicity of roles, the
main point is that although debugging is extremely difficult, it can be done. It may take
skill and creativity, but one can succeed by being methodical and persistent.

Eric Roberts recommends Robert Pirsig’s novel Zen and the Art of Motorcycle
Maintenance: An Inquiry into Values (Bantam, 1974) as the best exposition of the art and
psychology of debugging.

 – 3 –

Using an online debugger

There is nothing like first-hand evidence.
— Sir Arthur Conan Doyle, A Study in Scarlet, 1888

The key to debugging is to get the computer to show you what it’s doing. The computer,
after all, is there in front of you. You can watch it work. You can’t ask the computer why
it isn’t working, but you can have it show you its work as it goes. Modern programming
environments like Eclipse come equipped with a debugger, a special facility for
monitoring a program as it runs. By using the Eclipse debugger, for example, you can
step through the operation of your program and watch it work. Using the debugger helps
you build up a good sense of what your program is doing, and often points the way to the
mistake.

The remainder of this handout describes the techniques you might use to look for bugs
with the help of the Eclipse debugger.

Figure 2. Buggy program intended to play a simplified form of roulette

/*
 * File: Roulette.java
 * -------------------
 * This program simulates a small part of the casino game of
 * roulette.
 */

import acm.program.*;
import acm.util.*;

public class Roulette extends ConsoleProgram {

/** Amount of cash with which the player starts */
 private static final int STARTING_MONEY = 100;

/** Amount wagered in each game */
 private static final int WAGER_AMOUNT = 10;

/** Runs the program */
 public void run() {
 giveInstructions();
 playRoulette();
 }

 /**
 * Plays roulette until the user runs out of money.
 */
 private void playRoulette() {
 int money = STARTING_MONEY;
 while (money > 0) {
 println("You now have $" + money + ".");
 String bet = readLine("Enter betting category: ");
 int outcome = spinRouletteWheel();
 if (isWinningCategory(outcome, bet)) {
 println("That number is " + bet + " so you win.");
 money += WAGER_AMOUNT;
 } else {

 – 4 –

 println("That number is not " + bet + " so you
lose.");
 money -= WAGER_AMOUNT;
 }
 }
 println("You ran out of money.");
 }

 /**
 * Simulates the spinning of the roulette wheel. The method
 * returns the number of the slot into which the ball fell.
 */
 private int spinRouletteWheel() {
 println("The ball lands in " + rgen.nextInt(0, 36) + ".");
 return rgen.nextInt(0, 36);
 }

/*
 * Returns true if the outcome matches the category specified
 * by bet. If the player chooses an illegal betting
 * category, this function always returns false.
 */
 private boolean isWinningCategory(int outcome, String bet) {

 if (bet == "odd") {
 return outcome % 2 == 1;
 } else if (bet == "even") {
 return (outcome % 2 == 0);
 } else if (bet == "low") {
 return (1 <= outcome && outcome <= 18);
 } else if (bet == "high") {
 return (19 <= outcome && outcome <= 36);
 } else {
 return (false);
 }
 }

 /**
 * Welcomes the player to the game and gives instructions on
 * the rules of roulette.
 */
 private void giveInstructions() {
 println("Welcome to the roulette table!");
 println("Roulette is played with a large wheel divided into");
 println("compartments numbered from 0 to 36. Each player");
 println("places bets on a playing field marked with the");
 println("numbers and various categories. In this game,");
 println("the only legal bets are the following categories:");
 println("odd, even, low, or high. Note that 0 is not in any");
 println("category. After the bet is placed, the wheel is");
 println("spun, and a marble is dropped inside, which bounces");
 println("around until it lands in a compartment. If the");
 println("compartment matches the betting category you chose,");
 println("you win back your wager plus an equal amount. If");
 println("not, you lose your wager.");
 }

/* Private instance variables */

 private RandomGenerator rgen = new RandomGenerator();
}

 – 5 –

Assessing the symptoms

It is a capital mistake to theorise before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.

— Sir Arthur Conan Doyle, A Scandal in Bohemia, 1892

Before you start using the debugger, it is always valuable to run the program to get a
sense of what the problems might be. If you run the Roulette program, you might see
the following sample run:

Even though the program is “running,” the results don’t look so good. The problem is
that 6 is even, but the program tells you that it isn’t and has happily taken your wager.
Something is definitely wrong.

For programs that use random numbers, it is important to debug the program in a
deterministic environment. For this reason, it is useful to set the random number
generator to a particular seed before proceeding. You can do that by adding the
following line to the run method:

rgen.setSeed(1);

That way your program will work the same way each time, so that you can always get
back to the same situation. With this new statement, the output (leaving out the
instructions this time) looks like this:

 – 6 –

The Eclipse debugger

Detection requires a patient persistence which amounts to obstinacy.
— P. D. James, An Unsuitable Job for a Woman, 1972

One of the easiest ways to figure out what the program is doing is to use the Eclipse
debugger to help with that process. When you run a project under Eclipse, you can use
the debugger to set breakpoints in your code, which will enable you to stop it at
interesting places, step through the program one step at a time, examine variables, and do
other useful things.

Debugging, however, is a creative enterprise, and there is no magic technique that tells
you what to do. You need to use your intuition, guided by the data that you have. In the
Roulette program, your intuition is likely to suggest that the problem is in the method
isWinningCategory, given that the sample runs suggest—on the basis of what is still a
pretty small sample—that the computer is never allowing the user to win. Thus, you
might scroll the editor window down to isWinningCategory and set a breakpoint on
the first line, so that the program will stop there. To do so, double-click in the just barely
gray margin (which will surely show up as white on the photocopies), at which point a
small circle appears indicating that there is now a breakpoint on that line, as shown:

Once you’ve set the breakpoint, your next step is to run the program with the debugger
connected, which you can do by clicking on the bug icon () that appears to the left of the
green triangle on the Eclipse tool bar. Your program will then start running, display all
of the instructions, and then again ask you to select a category. Suppose that you again

 – 7 –

enter "even" and watch as the program again tells you that the wheel has landed in
number 27 (given that it is now behaving deterministically). At that point, the program
calls isWinningCategory, where it stops at the breakpoint like this:

The arrow and the background highlight mark the line of code you are about to execute.

As it happens, however, there is a lot more information displayed in Eclipse’s debugging
perspective. The “Debug” window at the upper left shows the execution history of the
program. If you scroll this window down a couple of lines, you see the following:

The bottom lines tell you where you are in the execution. You are currently at line 61 of
isWinningCategory, which was called from line 35 of playRoulette, which was in
turn called from line 13 of run. Each of these constitutes a stack frame, as described in
the text.

The window on the upper right is the “Variables” window, which allows you to see the
current values of variables in the current stack frame, which looks like this:

 – 8 –

In this frame, the local variables are simply the parameters to isWinningCategory. We
chose the category "even", which appears as the value of the variable bet, and the
variable outcome has the value 15.

But wait a minute, the outcome as shown on the console indicates that the ball landed in
27. Why does this frame show it as 15? Clearly the computer is doing something wrong.

In point of fact, that diagnosis—tempting as it sometimes is for all of us—is almost
certainly incorrect. The computer is almost certainly doing exactly what you told it to do.
The problem is that the programmer has done something wrong. The task now is to find
out what that is. The problem is obviously earlier in the program than intuition might
suggest, so it is necessary to go back and insert an earlier breakpoint.

You can now go back and stop the Roulette program, either by clicking in its close box
or by clicking on the red square in the Debug window. In the editor window, you can
double-click on the first line of spinRouletteWheel to see what’s happening there. If
you debug the program again, it will soon stop in the following state:

Think about what you know. The spinRouletteWheel method prints out one outcome,
but somewhere later on that value seems to be different. Armed with that understanding
of the problem, look at the code for spinRouletteWheel:

private int spinRouletteWheel() {
 println("The ball lands in " + rgen.nextInt(0, 36) + ".");
 return rgen.nextInt(0, 36);
}

 – 9 –

At some point—probably right away for most of you—the problem will jump out at you.
The println method generates a random number in the range 0 to 36, but the return
statement goes on and generates a new one. There is nothing to guarantee that the value
spinRouletteWheel prints and the value it returns will be the same. You need to rewrite
the method as follows:

private int spinRouletteWheel() {
 int spin = rgen.nextInt(0, 36);
 println("The ball lands in " + spin + ".");
 return spin;
}

Surely, that’s the bug. Given your confidence, you try running it without the debugger.
Unfortunately, the output looks exactly as it did before. You still lose every time:

Back to the drawing board.

Finding the critical clues

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which
vital. Otherwise your energy and attention must be dissipated instead
of being concentrated.

— Sir Arthur Conan Doyle, The Adventure
of the Reigate Squires, 1892

As always in debugging, your primary goal is to figure out what your program is doing
rather than why is it not doing what you wanted. To do so, you need to gather as much
information as you can, and Eclipse offers great tools for doing so. It’s time to go back
and look for more clues.

You still have the breakpoints in place, so try debugging the program and letting it run to
the breakpoint in isWinningCategory. To save time, however, it is probably worth
changing your wager given that you know that the first spin is going to be 27. You’re
trying to see why the program doesn’t pay off, so it might make sense to choose the
category "odd" rather than "even", since that will allow you to follow through what
happens when you have picked the correct category.

 – 10 –

When you arrive at the breakpoint, things look a little better. The variables window now
looks like this:

The value of outcome shows correctly as 27, and we are betting on "odd". Things should
therefore be good for the player, but something is still going wrong.

The most useful tools at this point are the various controls that appear along the top of the
Debug window, of which the following are the most important:

 Resume. Continues the program from where it last stopped, either because
of hitting a breakpoint or because the user clicked Suspend.

 Suspend. Stops the program as if it had hit a breakpoint.

 Terminate. Exits from the program entirely.

 Step Into. Executes one statement of the program and then stops again. If
that statement includes a method call, the program will stop at the first line
of that method. As noted below, this option is not as useful as Step Over.

 Step Over. Executes one statement of the program at this level and then
stops again. Any method calls in the statement are executed through to
completion unless they contain explicit breakpoints.

 Step Return. Continues to execute this method until it returns, after which
the debugger stops in the caller.

The three stepping options are extremely useful, but you need to take some care in
choosing which one to use. In most cases, Step Over is the right option to use.
Intuitively, it has the effect of continuing to the next step at this level, allowing you to
stay at the same conceptual level of abstraction. If the current statements calls one of
your own methods, Step Into may be exactly what you want, because that will allow you
to debug that subsidiary method if necessary. The danger with Step Into arises when the
current statement contains calls to library methods such as println. In such cases, Step
Into will try to step through the code for those methods, which can be extremely
confusing.

The source window in the debugger now shows the following situation:

 – 11 –

Here, the program is stopped at a line that includes no method calls, so it doesn’t matter
which of Step Into or Step Over you choose. To get into the habit, however, it’s
probably best to go with Step Over unless there is a reason not to.

What you would like to have happen at this point is for the program to determine that bet
is in fact equal to "odd" and continue on to the return statement on the next line. But it
doesn’t. When you click on Step Over, you end up in the following position:

Avoiding value rigidity

Regard with distrust all circumstances which seem to favor our secret desires.
— Émile Gaboriau, Monsieur Lecoq, 1868

If you go look at the code for isWinningCategory, many of you will see the problem
immediately. On the other hand, others might stare right at the bug and not see anything.
This problem is described perfectly by Robert Pirsig, in his discussion of “gumption
traps” in Zen and the Art of Motorcycle Maintenance:

 – 12 –

The typical situation is that the motorcycle doesn’t work. The facts are there
but you don’t see them. You’re looking right at them, but they don’t yet have
enough value. . . . Quality, value, creates the subjects and objects of the world.
The facts do not exist until value has created them. If your values are rigid you
really can’t learn new facts.

This often shows up in premature diagnosis, when you’re sure you know
what the trouble is, and then when it isn’t, you’re stuck. Then you’ve got to find
some new clues, but before you can find them you’ve got to clear your head of
old opinions. If you’re plagued with value rigidity you can fail to see the real
answer even when it’s staring you in the face because you can’t see the new
answer’s importance.

In this case, the way in which value rigidity might come to the fore is if you think too
literally about the expressions you’ve written them, seeing them as what you want them
to mean as opposed to what they in fact do mean. Here, the problem lies in the if tests,
starting with the first:

if (bet == "odd")

It is so easy to read this conditional test as “if bet is equal to the string "odd".” What
else could it mean? The answer is that Java interprets the == operator for objects in a
much less intuitive way. The correct English translation of this statement is “if bet is the
same object as the constant string "odd".” Since bet was read in from the user, this
condition will never be true.

The fix in this case is to replace the instances of the == operator with calls to equals or,
better yet, equalsIgnoreCase. Now the isWinningCategory method looks like this:

private boolean isWinningCategory(int outcome, String bet) {
 if (bet.equalsIgnoreCase("odd")) {
 return outcome % 2 == 1;
 } else if (bet.equalsIgnoreCase("even")) {
 return (outcome % 2 == 0);
 } else if (bet.equalsIgnoreCase("low")) {
 return (1 <= outcome && outcome <= 18);
 } else if (bet.equalsIgnoreCase("high")) {
 return (19 <= outcome && outcome <= 36);
 } else {
 return (false);
 }
}

Seeing the process through

A great detective must have infinite patience. That is the quality next to
imagination that will serve him best. Indeed, without patience, his
imagination will serve him but indifferently.

— Cleveland Moffett, Through the Wall, 1909

One of the most common failures in the debugging process is inadequate testing. After
making the corrections described in the preceding sections, you could run this program
for some time before you discovered anything amiss. There is, however, one additional
problem. The instructions generated by the program go out of their way to remind you

 – 13 –

that the number 0 is not considered part of any category. The current implementation of
isWinningCategory correctly determines that 0 is neither high or low, but does allow it
to count as even. This error—if it were allowed to stand—would give the player a better-
than-50-50 chance of winning by betting on "even", which would undoubtedly be of
some concern to the owners of the casino. To avoid the problem, the implementation of
isWinningCategory must specifically disallow 0 when it tests for even numbers. Thus,
the code should look like this:

private boolean isWinningCategory(int outcome, String bet) {
 if (bet.equalsIgnoreCase("odd")) {
 return outcome % 2 == 1;
 } else if (bet.equalsIgnoreCase("even")) {
 return (outcome % 2 == 0 && outcome != 0);
 } else if (bet.equalsIgnoreCase("low")) {
 return (1 <= outcome && outcome <= 18);
 } else if (bet.equalsIgnoreCase("high")) {
 return (19 <= outcome && outcome <= 36);
 } else {
 return (false);
 }
}

There is no strategy that can guarantee that your program is ever bug free. Testing helps,
but it is important to keep in mind the caution from Edsger Dijkstra that “testing can
reveal the presence of errors, but never their absence.” By being as careful as you can
when you design, write, test, and debug your programs, you will reduce the number of
bugs, but you will be unlikely to eliminate them entirely.

