
Math 121: Introduction to Computing Handout #13

The Demo Programs in Folder Assignment3

Pseudorandom Numbers
The Java class PiApproximation uses the RandomGenerator class in acm.util to
solve the following exercise from our text:

 Although it is often easiest to think of random numbers in the context of games of chance, they

have other, more practical uses in computer science and mathematics. For example, you can
use random numbers to generate a rough approximation of the constant π by writing a simple
program that simulates a dart board. Imagine that you have a dart board hanging on your wall.
It consists of a circle painted on a square backdrop, as in the following diagram:

If you throw darts at this board in a random fashion, some will fall inside the circle, but some
will fall outside. If the tosses are truly random, the ratio of the number of darts that land inside
the circle to the total number of darts hitting the square should be roughly equal to the ratio
between the two areas. The ratio of the areas is independent of the actual size of the dart
board, as illustrated by the following formula:

darts falling inside the circle
darts falling inside the square ≅

area of the circle
area of the square =

πr2

4r2 =
π
4

To simulate this process in a program, imagine that the dart board is drawn in the standard
Cartesian coordinate plane you learned about in high school. The process of throwing a dart
randomly at the square can be modeled by generating two random numbers, x and y, each of
which lies between –1 and 1. This (x, y) point always lies somewhere inside the square. The
point (x, y) lies inside the circle if

x2 + y2 < 1

This condition, however, can be simplified considerably by squaring each side of the
inequality, which gives the following more efficient test:

x2 + y2 < 1

If you perform this simulation many times and compute the fraction of darts that fall within the
circle, the result will be somewhere in the neighborhood of π/4.

 – 2 –

Write a program that simulates throwing 10,000 darts and then uses the simulation technique
described in this exercise to generate and display an approximate value of π. Don’t worry if
your answer is correct only in the first few digits. The strategy used in this problem is not
particularly accurate, even though it occasionally proves useful as a technique for making
rough approximations. In mathematics, this technique is called Monte Carlo integration, after
the gambling center that is the capital city of Monaco.

Pseudorandomly Changing Colors
The Java class ColorChangingSquare similarly creates a colored square and then
changes its color randomly every second.

Pseudorandom Circles
RandomCircles is a subclass of GraphicsProgram that draws a set of ten circles with
different sizes, positions, and colors. Each circle has a randomly chosen color, a
randomly chosen radius between 5 and 50 pixels, and a randomly chosen position on the
canvas, subject to the condition that the entire circle must fit inside the canvas without
extending past the edge. The following sample run shows one possible outcome:

On some runs of this program you might not see ten circles. Why?

Drawing Lines in Response to the Mouse
RubberBanding is a subclass of GraphicsProgram that allows the user to draw lines on
the canvas. Pressing the mouse button sets the starting point for the line. Dragging the
mouse moves the other endpoint around as the drag proceeds. Releasing the mouse fixes
the line in its current position and gets ready to start a new line. For example, suppose
that you press the mouse button somewhere on the screen and then drag it rightward an
inch, holding the button down. What you’d like to see is the following picture:

 – 3 –

If you then move the mouse downward without releasing the button, the displayed line
will track the mouse, so that you might see the following picture:

Because the original point and the mouse position appear to be joined by some elastic
string, this technique is called rubber-banding.

Although this program may seem quite powerful (and indeed it allows you to draw any
figure on the screen that can be drawn with lines), it is also simple to implement. The
entire program requires fewer than 20 lines of code.

Using the GArc and GPolygon Graphics Classes
The Java classes YinYang and StopSign demonstrate two of the “shape classes” in the
acm.graphics package. These classes are described in the text. Most of them are
relatively easy to use; the ones that seem to cause difficulty are GArc and GPolygon. For
these classes, the important things to remember are:

• The GArc constructor takes the boundary of the rectangle that contains the ellipse in

which the arc appears, along with two parameters—start and sweep—that give the
angle at which the arc begins (measured in degrees counterclockwise from the +x axis)
and the number of degrees through which the arc extends, respectively.

• The coordinates of the vertices of a GPolygon are measured relative to a point defined
to be the origin of that polygon. The origin need not actually be a vertex; in many
cases, for example, the most convenient origin for the polygon is its center. When you
add a GPolygon to the canvas, the entire figure is then shifted to the location of the
entire polygon and drawn relative to that point.

The YinYang class uses the GArc class to draw the following Yin-Yang symbol:

 – 4 –

The StopSign class uses the GPolygon class to draw a picture of a stop sign, as follows:

Graphical Object Decomposition
The Java classes DrawFace1 through DrawFace3 solve a graphics problem while
focusing on the idea of decomposition. The problem is to generate an abstract picture of
a face that looks like this:

The parameters that control the size of the face are width and height, which can be
chosen by the programmer and which can be different for different faces. The dimensions
of the eyes, nose, and mouth are all calculated from the dimensions of the face as a whole
using the following constant definitions, each of which is multiplied by the width or the
height parameter, as appropriate:

private static final double EYE_WIDTH = 0.15;
private static final double EYE_HEIGHT = 0.15;
private static final double NOSE_WIDTH = 0.15;
private static final double NOSE_HEIGHT = 0.10;
private static final double MOUTH_WIDTH = 0.50;
private static final double MOUTH_HEIGHT = 0.03;

The Java classes show three different solutions to the problem:

1. A decomposition strategy similar to the style used in Karel in which the face is

assembled on the canvas by calling a procedure

 – 5 –

void drawFace(double x, double y, double width, double height)

 where x and y are the center of the face rather than its upper-left corner. The code for

drawFace then uses stepwise refinement to break the problem up into similar calls to
drawEye, drawNose, and drawMouth.

2. A parallel decomposition strategy in the object domain where the face is a GFace
object, which is a subclass of GCompound. That compound is initialized by the
constructor to contain two GEyes, a GNose, and a GMouth.

3. A possibly amusing example in which we extend the GEye implementation to include
a pupil that tracks mouse motions.

