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1. Introduction

The ideals generated by the minors of matrices whose entries are linear forms are not
yet well-understood, unless the forms themselves satisfy some strong condition. One has a
wealth of information if the matrix is generic, symmetric generic or Hankel; here we tackle
1-generic matrices. We recall the definition of 1-genericity introduced in [E2] by Eisenbud:
Let F be a field and X1, . . . , Xs be indeterminates over F . Let M be an m× n matrix of
linear forms in F [X1, . . . , Xs], with m ≤ n and s ≥ m + n− 1. By a generalized row of M

one means a non-trivial F -linear combination of the rows of M . By a generalized entry of
M one means a non-trivial F -linear combination of the entries of a generalized row of M .
M is said to be 1-generic if every generalized entry is non-zero.

Generic, symmetric generic, Hankel matrices, as well as many others are all 1-generic.
In this wider context, however, the only case of determinantal ideals fully understood is
that of the ideals generated by the maximal minors. In fact, in [E2] it is proved that these
ideals are prime. However, when one considers ideals generated by non-maximal minors,
patterns get complicated by the fact that often these ideals are not prime.
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Recently, the authors have applied the theory of 1-generic matrices to problems arising
from the theory of hyperdeterminants, see [GS]. In that context specifically emerged the
interest of investigating the structure of ideals generated by non-maximal minors of 1-
generic matrices. The possible lack of a combinatorial structure is one of the difficulties
one encounters in this type of task. In the present work we concentrate on a specific class of
1-generic matrices that preserve some combinatorial aspects. This also allows to determine
the primary decomposition of ideals obtained by taking the first partial derivatives of a
class of trilinear forms studied in [BBG].

Let F be a field, 2 ≤ m ≤ n integers, and consider the matrix

M =




r11X1 r12X2 r13X3 · · · r1nXn

r22X2 r23X3 r24X4 · · · r2,n+1Xn+1

...
rmmXm rm,m+1Xm+1 rm,m+2Xm+2 · · · rm,m+n−1Xm+n−1


 ,

where X1, X2, . . . , Xm+n−1 are indeterminates and all the coefficients rij are units in F .
We call such matrices generalized Hankel matrices. The usual Hankel matrices have all
coefficients rij equal to 1. Note that the indices on the rij are as follows: i denotes the
row and j the index of the variable that this coefficient multiplies. Thus j − i + 1 is the
column number in which the term rijXj appears.

The generalized Hankel matrices are examples of 1-generic matrices whose ideals of
non-maximal minors might not be prime. They appear in [BBG], in connection with
diagonal non-degenerate trilinear forms of boundary format. Let h ≥ n ≥ m ≥ 2, a
trilinear form A =

∑
1≤i≤h
1≤j≤n
1≤k≤m

aijkXiYjZk has a boundary format if h = n + m− 1. In this

case, it is said to be diagonal and non-degenerate if aijk 6= 0 if and only if i = j + k − 1.
When this happens, the m × n matrix given by the second partial derivatives by the Zk

and the Yj is generalized Hankel.

Hankel matrices play an important role in the theory of 1-generic matrices. In fact, by
using linear changes of the variables, elementary row operations and elementary column
operations, Eisenbud [E2] showed that a 1-generic 2× n matrix can be transformed into a
scrollar space format, in other words a juxtaposition of Hankel matrices, with no overlaps
among the variables in the submatrices.

The structure of 1-generic m×n matrices, with m ≥ 3, is much less understood. In the
present work we analyze the structure of m× n generalized Hankel matrices, with m ≥ 3.
In particular we determine the minimal primary decomposition of the ideals generated by
the 2× 2 minors of such matrices. An analysis of what can possibly happen in the case of
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the 3 × 3 minors when M is a generalized Hankel matrix of size 4 × 4 and 5 × 5 is given
in [BCS].

By I2(M) we denote the ideal in the polynomial ring F [X1, . . . , Xm+n−1] which is
generated by the 2× 2 minors of M .

In Section 2 we identify two integers intrinsic to M either of which allows to decide
whether I2(M) is prime. In Section 3 we prove that I2(M) is either prime or else it has
exactly two minimal components; when it is not a prime ideal, it sometimes also has one
embedded component (see Theorems 3.2 and 3.4). We give all these components explicitly
and we also give a numerical criterion for when each case occurs. In Section 4, we use this
information to describe the set of the associated primes of the Jacobian ideal generated
by the first partial derivatives of a diagonal non-degenerate trilinear forms of boundary
format; see Theorem 4.6.

The first author thanks New Mexico State University for the hospitality, the Progetto
MURST - GNSAGA and the Progetto INDAM - GNSAGA (Italy) for partial support. The
second author thanks the University of L’Aquila for the hospitality, the National Science
Foundation and the Progetto MURST - GNSAGA (Italy) for partial support.

2. When is I2(M) prime?

Assume the notation described. We first recall what is known in the special case:

Theorem 2.1: Assume rij = 1 for all i, j. Then I2(M) is a prime ideal of height
m + n− 3.

Proof: Here, M is the usual Hankel matrix, and by the work of Gruson and Peskine [GP],

I2(M) = I2

([
X1 X2 X3 X4 · · · Xm+n−2

X2 X3 X4 X5 · · · Xm+n−1

])
,

the ideal of maximal minors of a 1-generic matrix. The latter is a prime ideal of height
m + n− 2− 2 + 1 = m + n− 3 by [E2].

By work of [GP], actually for every t = 1, . . . , m, the ideal generated by the t × t

minors of M is prime in this special case when all the rij equal 1. More information on
the ideal of minors (and their powers) of classical Hankel matrices can be found in [C] and
[W].

3



Without the assumption that the rij be equal to 1 for all indices i and j, however,
the primeness property no longer holds.

To distinguish all the cases for which I2(M) is prime, we first need to define two
integers s and t intrinsic to the matrix. The definition of these integers involves first trans-
forming M into a special form by scaling the variables. Note that the scaling of variables
does not change the number of primary components, the primeness, or the primariness
properties! So, we start defining s.

Discussion: By scaling the variables, we assume that for all j = 1, . . . , n, r1j = 1.
We next show how to rescale the variables in such a way so that all the coefficients in the
second row are 1 as well. For this, let j be the largest index such that r2j 6= 1. Since we
are trying to determine the primary decomposition of I2(M), without loss of generality we
may divide the (j − 1)th column by r2j . At this point the coefficient in the first row and
(j− 1)th column is not 1 anymore, but after rescaling the variable Xj−1 appropriately, all
the coefficients in the first row are again 1. With this now all the coefficients r1i are 1 and
also r2j = r2,j+1 = · · · = r2,n+1 = 1. Coefficients different from 1 in row 2 may now only
appear on the left of the spot (2, j). We repeat this procedure until all the r1i and all r2i

are 1. Thus without loss of generality the matrix M for which we want to study I2(M) is
of the form




X1 X2 X3 · · · Xn

X2 X3 X4 · · · Xn+1

r33X3 r34X4 r35X5 · · · r3,n+2Xn+2

r44X4 r45X5 r46X6 · · · r4,n+3Xn+3

...
rmmXm rm,m+1Xm+1 rm,m+2Xm+2 · · · rm,m+n−1Xm+n−1




,

with all rij units in F . As before, without loss of generality we may multiply a row by a
unit, so we divide the third row by r33. Then by rescaling the last variable in the third
row, namely Xn+2, we may assume that r3,n+2 = 1. Similarly, by continuing this process
for each of the subsequent rows, we assume that all the coefficients in the first column and
last column are 1. Eventually, without loss of generality, the matrix M for which we want
to study I2(M) is of the form




X1 X2 X3 · · · Xn

X2 X3 X4 · · · Xn+1

X3 r34X4 r35X5 · · · Xn+2

X4 r45X5 r46X6 · · · Xn+3

...
Xm rm,m+1Xm+1 rm,m+2Xm+2 · · · Xm+n−1




,
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with all rij units in F .
Now we can finally define s:

Definition 2.2: After converting M to the form as above, if some new rij is different
from 1, define

s = s(M) = min{j : there exists i ≥ 3 such that rij 6= 1}.

Note that s ≥ 4 and that the column in which Xs appears with the non-one coefficient
is never the last nor the first one. Clearly s does not exist if and only if all the coefficients
rij are equal to 1.

The assumption that s exists implies that I2(M) contains many monomials, and hence
that I2(M) is not a prime ideal:

Lemma 2.3: Whenever s is defined, for all i = 1, . . . , s− 1, XiXs ∈ I2(M).

Proof: Without loss of generality M is in the special form. We will use the fact that the
appearance of risXs does not appear in the last column nor in the first two rows of M .

In the case that i + 2 < s, the following is a submatrix of M :




Xi Xs−2 Xs−1

Xi+1 Xs−1 Xs

Xi+2 risXs ∗


 .

If i + 1 < s− 2, then also [
Xi+1 Xs−2

Xi+2 Xs−1

]

is a submatrix of M , so that

(ris− 1)XiXs = (risXiXs−Xi+2Xs−2)− (XiXs−Xi+1Xs−1)− (Xi+1Xs−1−Xi+2Xs−2)

is an element of I2(M), forcing XiXs to be in I2(M) as well.
In the case that i = s− 2, M has the submatrix




∗ Xs−2 Xs−1

Xs−2 Xs−1 Xs

Xs−1 risXs ∗


 .

Then by taking appropriate 2× 2 minors,

(ris − 1)Xs−2Xs = (risXs−2X2 −X2
s−1)− (Xs−2X2 −X2

s−1) ∈ I2(M),
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so that Xs−2Xs ∈ I2(M). Finally, in the case that i = s− 1, the submatrix




∗ Xs−2 Xs−1

Xs−2 Xs−1 Xs

Xs−1 risXs ri,s+1Xs+1




of M yields that risXs−1Xs−ri,s+1Xs−2Xs+1 and Xs−1Xs−ri,s+1Xs−2Xs+1 both belong
to I2(M). Therefore (1− ris)Xs−1Xs ∈ I2(M), so that Xs−1Xs ∈ I2(M).

Corollary 2.4: For a given generalized Hankel matrix M , s exists if and only if I2(M)
is not prime.

We now define an integer t for the matrix M in a way similar to that used to define
s. The integer t plays for the matrix obtained from M by rotating it by 180o the same
role as s does for M : by rescaling the variables and dividing the rows and columns by
non-zero scalars, in a way so that all the coefficients in the last two rows and the first and
last columns are 1, the matrix M can be converted to the form:




X1 r12X2 r13X3 · · · r1,n−1Xn−1 Xn

X2 r23X3 r24X4 · · · r2nXn Xn+1

...
Xm−2 rm−2,m−1Xm−1 rm−2,mXm · · · rm−2,m+n−4Xm+n−4 Xm+n−3

Xm−1 Xm Xm+1 · · · Xm+n−3 Xm+n−2

Xm Xm+1 Xm+2 · · · Xm+n−2 Xm+n−1




,

with all rij units in F .

Definition 2.5: After converting M to the form as above, define

t = t(M) = max{j : there exists i ≤ m− 2 such that j − i + 1 < n and rij 6= ri,j+1}.

The requirement j − i + 1 < n means only that the column number is strictly less
than n. Note that t ≤ m + n− 4.

By symmetry:

Lemma 2.6: Whenever t is defined, for all j ≥ t + 1, XtXj ∈ I2(M).

Thus also t exists if and only if I2(M) is not prime, hence s exists if and only if t does.
In the following assume that s (and t) exists.

Corollary 2.7: If s > t, then (X1, . . . , Xt)(Xs, . . . , Xm+n−1) ⊆ I2(M).
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Proof: Let i ≤ t and j ≥ s. We will prove that XiXj ∈ I2(M). By the lemmas, this is
already known to hold if either i = t or j = s. Suppose that i < t < s < j. Then modulo
one of the 2 × 2 minors of M , this monomial is in I2(M) if and only if Xi+1Xj−1 is in
I2(M). In this way we raise the index of the first variable and simultaneously lower the
index of the second variable until either i becomes t or j becomes s, at which point the
previous lemmas prove the corollary.

There are even more monomials in I2(M):

Proposition 2.8: For i = 0, 1, . . . , m + n− 1− s, Xi+1
1 Xs+i ∈ I2(M), and analogously,

for j = 0, . . . , t− 1, Xj+1
m+n−1Xt−j ∈ I2(M).

Proof: We only prove the first part. The proof is by induction on i. The case i = 0 holds
by Lemma 2.3. If i > 0,

Xi+1
1 Xs+i = Xi

1X1Xs+i ≡ aXi
1X2Xs+i−1 modulo I2(M),

where a is a unit in F , but the latter is in I2(M) by induction on i.

It follows immediately that

Corollary 2.9: Xm+n−4
1 (Xs, . . . , Xm+n−1) ⊆ I2(M) and Xm+n−4

m+n−1 (X1, . . . , Xt) ⊆ I2(M).

Proof: From Proposition 2.8 the elements X1Xs, X
2
1Xs+1, . . . , X

m+n−s
1 Xm+n−1 are in

I2(M). Since s ≥ 4, one has m + n − s ≥ m + n − 4, thus Xm+n−4
1 Xj ∈ I2(M) for all

j ≥ s. Analogously, using Proposition 2.8 and t ≤ m + n− 4, one can prove the statement
about Xm+n−4

m+n−1 (X1, . . . , Xt) being included in I2(M).

3. Primary decomposition of I2(M)

Having illustrated the case in which al the coefficients rij are 1 in Thoerem 2.1 we
assume in this section that s (and t) exists.

Define the following three ideals in the ring F [X1, . . . , Xm+n−1]:

Q1 = I2(M) + (Xs, . . . , Xm+n−1),

Q2 = I2(M) + (X1, . . . , Xt),

Q3 = I2(M) + (Xm+n−4
1 , Xm+n−4

m+n−1 ).
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Theorem 3.1: Q1, Q2 and Q3 are primary to the prime ideals (X2, . . . , Xm+n−1),
(X1, . . . , Xm+n−2), and (X1, . . . , Xm+n−1), respectively.

Proof: Clearly Q3 is primary to the maximal homogeneous ideal because any minimal
prime over Q3 contains X1 and Xm+n−1 and therefore, by the shape of M , also all the
other variables.

Now let N be the matrix obtained from M by setting Xs, . . . , Xm+n−1 equal to zero.
Then N is, after rescaling the variables X1, . . . , Xs−1, equal to a standard Hankel matrix
with Xs, . . . , Xm+n−1 equal to 0. But then I2(N) + (Xs, . . . , Xm+n−1) is primary to
(X2, . . . , Xm+n−1) by [GP]. As Q1 equals this ideal, it follows that Q1 is primary to
(X2, . . . , Xm+n−1).

The analogous proof works also for Q2.

Theorem 3.2: Assume that s and t exist. If s > t, then I2(M) = Q1 ∩Q2 is a primary
decomposition.

Proof: It suffices to prove that I2(M) = Q1 ∩Q2. For this:

I2(M) ⊆ Q1 ∩Q2

= (I2(M) + (Xs, . . . , Xm+n−1)) ∩ (I2(M) + (X1, . . . , Xt))

= I2(M) + (Xs, . . . , Xm+n−1) ∩ (I2(M) + (X1, . . . , Xt)) .

Let f be an element of the intersection (Xs, . . . , Xm+n−1)∩(I2(M) + (X1, . . . , Xt)). With-
out loss of generality, f is homogeneous and necessarily of degree at least 2. Write
f =

∑
i≥s aiXi, where the ai are homogeneous elements of degree at least one. We first

prove that we only need to consider the f of the form f0Xm+n−1. Namely, consider the
term aiXi with s ≤ i < m + n − 1. As s > t, by Corollary 2.7, we may assume that ai

involves only the variables Xt+1, . . . , Xm+n−1. Now, for j > t, by going modulo appropri-
ate 2× 2 minors of M , the monomial XjXi appearing in aiXi may be reduced to a scalar
multiple of the monomial Xj−1Xi+1. By repeating this and by using Corollary 2.7, we see
that we only need to consider the cases when as = · · · = am+n−2 = 0. Thus we assume
that f = f0Xm+n−1. As f is an element of I2(M)+ (X1, . . . , Xt) = Q2, and Q2 is primary
to (X1, . . . , Xm+n−2), it follows that f0 ∈ I2(M) + (X1, . . . , Xt). It remains to show that
Xm+n−1(X1, . . . , Xt) is contained in I2(M). But this follows by Corollary 2.7.

The following Lemma shows that, when s ≤ t, another primary component is needed
to get a primary decomposition of I2(M).
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Lemma 3.3: When s ≤ t, the irredundant primary decomposition of I2(M)+(Xs, . . . , Xt)
is

(I2(M) + (Xs, . . . , Xm+n−1)) ∩ (I2(M) + (X1, . . . , Xt)) .

Proof: That the two ideals in the intersection are primary follows by Theorem 3.1. It
remains to prove that their intersection equals I2(M) + (Xs, . . . , Xt).

Let N be the matrix obtained from M by setting Xs, . . . , Xm+n−1 to zero. Similarly,
let N ′ be the matrix obtained from M by setting X1, . . . , Xt to zero. Then the two ideals
above are I2(N) + (Xs, . . . , Xm+n−1) and I2(N ′) + (X1, . . . , Xt), respectively. As s ≤ t,
the intersection equals

= I2(N) + I2(N ′) + (Xs, . . . , Xm+n−1) ∩ (X1, . . . , Xt)

= I2(N) + I2(N ′) + (Xs, . . . , Xt) + (Xt+1, . . . , Xm+n−1)(X1, . . . , Xt)

⊆ I2(M) + (Xs, . . . , Xt) + (Xt+1, . . . , Xm+n−1)(X1, . . . , Xt).

Modulo 2× 2 minors of M , each monomial in (Xt+1, . . . , Xm+n−1)(X1, . . . , Xt) reduces to
an element in I2(M) + (Xs, . . . , Xt), which proves the lemma.

Theorem 3.4: If s ≤ t, then I2(M) = Q1 ∩ Q2 ∩ Q3 is an irredundant primary
decomposition.

Proof: The intersection Q1 ∩Q2 ∩Q3 equals

= (I2(M) + (Xs, . . . , Xm+n−1)) ∩ (I2(M) + (X1, . . . , Xt)) ∩
(
I2(M) + (Xm+n−4

1 , Xm+n−4
m+n−1 )

)

= I2(M) + (Xm+n−4
1 , Xm+n−4

m+n−1 ) ∩ (I2(M) + (Xs, . . . , Xm+n−1)) ∩ (I2(M) + (X1, . . . , Xt))

= I2(M) +
(
(Xm+n−4

m+n−1 ) + (Xm+n−4
1 ) ∩ (I2(M) + (Xs, . . . , Xm+n−1))

)

∩ (
(Xm+n−4

1 ) + (Xm+n−4
m+n−1 ) ∩ (I2(M) + (X1, . . . , Xt))

)

= I2(M) +
(
(Xm+n−4

m+n−1 ) + (Xm+n−4
1 ) (I2(M) + (Xs, . . . , Xm+n−1))

)

∩ (
(Xm+n−4

1 ) + (Xm+n−4
m+n−1 ) (I2(M) + (X1, . . . , Xt))

)
.

= I2(M) + (Xm+n−4
1 ) (I2(M) + (Xs, . . . , Xm+n−1))

+ (Xm+n−4
m+n−1 ) (I2(M) + (X1, . . . , Xt)) + (Xm+n−4

m+n−1 )(Xm+n−4
1 )

= I2(M) + (Xm+n−4
1 )(Xs, . . . , Xm+n−1) + (Xm+n−4

m+n−1 )(X1, . . . , Xt) + (Xm+n−4
m+n−1 )(Xm+n−4

1 ).

But all the monomial products above lie in I2(M) by Corollary 2.9, so that the intersection
of the three Q′is is indeed I2(M), thus proving the theorem.
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Observe that the height of I2(M) is m + n− 3 when I2(M) is prime (i.e. when M is
Hankel), and it is m + n− 2 otherwise.

4. Primary decomposition of the Jacobian ideal of a trilinear form

The minimal primes of the Jacobian ideal JA, obtained by taking the first partial
derivatives of a trilinear form

A =
∑

1≤i≤n+m−1
1≤j≤n
1≤k≤m

aijkXiYjZk

for which aijk 6= 0 if and only if i = j + k− 1, are described in [BBG]. There, among other
results, the authors prove that the maximal irrelevant ideal is an associated prime of JA.
As mentioned in the introduction, the trilinear form above is said to be non-degenerate
diagonal of boundary format. The matrix M whose (k, j) entry is given by the second
partial derivative AZkYj , has the form

M =




a111X1 · · · ann1Xn

a212X2 · · · an+1,n2Xn+1

...
am1mXm · · · am+n−1nmXm+n−1


 ,

where all the coefficients aijk are different from zero. Clearly, M is a generalized Hankel
matrix.

Experimental evidence unveiled a possible pattern for the whole set of the associated
primes of JA. In [BBG] it was conjectured that the embedded associated primes of JA

were in fact the associated primes of the ideals

(Y1, . . . , Yn, Z1, . . . , Zm, It(M)),

with 1 ≤ t ≤ m− 1.
In this section we analyze this problem when m = 3 and n ≥ 3. From this moment

on we operate in the polynomial ring F [X1, . . . , Xn+2, Y1, . . . , Yn, Z1, Z2, Z3]. In this case
A = ZMY t, where Z is the row-vector given by the Z, Y t is the transpose of the row-vector
given by the Y , and M is




r11X1 r12X2 r13X3 · · · r1nXn

r22X2 r23X3 r24X4 · · · r2,n+1Xn+1

r33X3 r34X4 r35X5 · · · r3,n+2Xn+2


 .
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Explicitly, the generators of JA are as follows:

AYj
= r1jXjZ1 + r2,j+1Xj+1Z2 + r3,j+2Xj+1Z3, 1 ≤ j ≤ m;

AZk
= rkkXkY1 + · · ·+ rk,k+n−1Xk,k+n−1Yn, k = 1, 2, 3;

AX1 = r11Y1Z1,

AX2 = r22Y1Z2 + r12Y2Z1,

AXi
= r3iYi−2Z3 + r2iYi−1Z2 + r1iYiZ1, 3 ≤ i ≤ n,

AXn+1 = r3,n+1Yn−1Z3 + r2,n+1YnZ2,

AXn+2 = r3,n+2YnZ3.

We first need a standard linear algebra result. We write the proof here for complete-
ness. Let C be an arbitrary c×d matrix. Let i1, . . . , ir be distinct elements of {1, 2, . . . , c}
and let j1, . . . , jr be distinct elements of {1, 2, . . . , d}. By [i1, . . . , ir|j1, . . . , jr] we denote
the r × r minor of C when taking rows i1, . . . , ir and columns j1, . . . , jr.

Lemma 4.1: Let F be a field and T1, . . . , Tc be indeterminates over F , then in the
polynomial ring F [T1, . . . , Tc],

(−1)sgn(i1,...,ir)Ti1 [i1, . . . , ir|j1, . . . , jr] +
∑

i 6=i1

(−1)sgn(i,i2,...,ir)Ti[i, . . . , ir|j1, . . . , jr]

is in I1 ([ T1 · · · Tc ] C).

Proof: Let D be the d × c matrix as follows: entries outside rows j1, . . . , jr and outside
columns i1, . . . , ir are all zero, the rest is the adjoint of the submatrix of C consisting of
rows i1, . . . , ir and columns j1, . . . , jr. Then CD is a c × c matrix which is zero outside
the columns i1, . . . , ir. In column ih, row l, the entry is plus or minus the r-minor of C

consisting of columns j1, . . . , jr and rows i1, . . . , ir after omitting the row ih and adding
row l. In particular, at most c− r + 1 entries in the column are non-zero. As

I1 ([ T1 . . . Tc ] C) ⊇ I1 ([ T1 . . . Tc ] CD) ,

the lemma follows.
Note that when C = M and the variables T1, . . . Tc are the variables Z1, Z2, Z3, then

I1 ([ Z1 Z2 Z3 ]M) equals (AY1 , . . . , AYn) ⊆ JA.

Proposition 4.2: If m = 3 and n ≥ 3,

I2(M)n−2(Y )(Z) ⊆ JA.
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Proof: It suffices to prove that for any 2× 2 minors ∆1, ∆2, . . . , ∆n−2 of M ,

YjZk∆1 ·∆2 · · ·∆n−2 ∈ JA,

for all j = 1, . . . , n, k = 1, 2, 3. Note that each ∆ is of the form [i1, i2|j1, j2] for some
admissible i1, i2, j1, j2. Actually, j1 and j2 are unimportant here, so throughout this proof
we write the minors simply as [i1, i2|.]. Furthermore, by the shorthand notation [i1, i2|.]a
we mean the product of a possibly distinct minors of the form [i1, i2|.] rather than an a-fold
product of one element [i1, i2|.].

We will use the following notation: if P (j) is a statement about the integer j, then
δP (j) equals 1 if P (j) is true, otherwise δP (j) is 0.

Note also that a direct consequence of Lemma 4.1 is that either Zi1 [i1, i2|.]+Zi3 [i3, i2|.]
or Zi1 [i1, i2|.]− Zi3 [i3, i2|.] is in JA.

We proceed in steps:

Step 1: We reduce to the case when k = 2 or k = 3, i.e., we eliminate the case
k = 1. So suppose that k = 1. As AX1 = r11Y1Z1 ∈ JA, without loss of generality j > 1.
Also, as AX2 = r22Y1Z2 + r12Y2Z1 ∈ JA, by reducing modulo this element without loss of
generality j > 2. Using the notation introduced above we may say that, for j = 2, . . . , n,
YjZ1 ∈ JA +(Yj−1Z2, δj>2Yj−2Z3). Thus, without loss of generality, we just need to prove
the assertion for k > 1.

Step 2: Now we reduce to one of the two cases: either k = 3, or if k = 2, then
{i1, i2} = {1, 3}. So let k = 2. By Lemma 4.1 applied to C = M and r = 2,

Z2[1, 2|.] ∈ JA + (Z3[1, 3|.]),
so without loss of generality {i1, i2} 6= {1, 2}. If {i1, i2} = {2, 3}, then similarly

YjZ2[2, 3|.] ∈ JA + (YjZ1[1, 3|.]).
If j = 1, the last term is in JA (as in Step 1), and if j > 1, then as in Step 1, the last term
YjZ1[1, 3|.] lies in

JA + (Yj−1Z2[1, 3|.], δj>2Yj−2Z3[1, 3|.]).
Thus we see that, without loss of generality, either k = 3 or if k = 2, then {i1, i2} = {1, 3}.

Step 3: We reduce to the case k = 3. By Step 2 we only need to consider the elements
YjZ2[1, 3|.]. Now,

YjZ2[1, 3|.]n−2 ∈ JA + (δj>1Yj−1Z3, δj<nYj+1Z1) [1, 3|.]n−2

= JA +
(
δj>1Yj−1Z3[1, 3|.]n−2

)
+

(
δj<nYj+1Z1[1, 3|.]n−2

)

⊆ JA +
(
δj>1Yj−1Z3[1, 3|.]n−2

)
+

(
δj<nYj+1Z2[2, 3|.][1, 3|.]n−3

)
.
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By repeating this step until the index on j increases to n− 1, as YnZ2 ∈ JA + (Yn−1Z3),
we see that we have reduced to the case k = 3.

Step 4: Now let k = 3. We reduce to the case {i1, i2} 6= {1, 3}. As YnZ3 ∈ JA,
without loss of generality j < n. As

YjZ3[1, 3|.] ∈ JA + (YjZ2[1, 2|.])
⊆ JA + (Yj+1Z1[1, 2|.], δj>1Yj−1Z3[1, 2|.])
⊆ JA + (Yj+1Z3[2, 3|.], δj>1Yj−1Z3[1, 2|.]),

we see that without loss of generality {i1, i2} 6= {1, 3}.
Finally, in order to prove that I2(M)n−2Y Z ⊆ JA, it suffices to prove that

YjZ3[1, 2|.]r[2, 3|.]t ∈ JA,

where r, t ∈ {0, 1, . . . , n− 2} and r + t = n− 2. As YnZ3 ∈ JA, without loss of generality
j < n. But from

YjZ3[1, 2|.] ∈ JA + (Yj+1Z2[1, 2|.], δj<n−1Yj+2Z1[1, 2|.])
⊆ JA + (Yj+1Z3[1, 3|.], δj<n−1Yj+2Z3[2, 3|.])

we conclude that each of the r minors of the form [1, 2|.] raises the index of Y by at least
1. As YnZ3 ∈ JA we may assume, without loss of generality, that r ≤ n− 1− j. Also,

YjZ3[2, 3|.] ∈ JA + (YjZ1[1, 2|.]),

whence as Y1Z1 ∈ JA, without loss of generality j > 1. Then

YjZ3[2, 3|.] ∈ JA + (YjZ1[1, 2|.])
⊆ JA + (Yj−1Z2[1, 2|.], δj>2Yj−2Z3[1, 2|.])
⊆ JA + (Yj−1Z3[1, 3|.], δj>2Yj−2Z3[1, 2|.]),

so that each of the t minors of the form [2, 3|.] reduces the index on Y by at least 1. Thus
as Y1Z1 ∈ JA, without loss of generality t ≤ j − 2. But then

n− 2 = r + t ≤ n− 1− j + j − 2 = n− 3,

which is a contradiction.
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Proposition 4.3: If m = 3 and n ≥ 3,

X (Y )2 Z + XY (Z)n−1 ⊆ JA

Proof: We prove the harder fact that XY (Z)n−1 ⊆ JA and leave the similar but easier
fact that X (Y )2 Z ⊆ JA to the reader. Let Z be the (n + m− 1)× n matrix whose (i, j)
entry is

∂2A

∂Xi∂Yj
=

∑

k

aijkZk = aij,i−j+1Zi−j+1 = ri−j+1,iZi−j+1,

which is interpreted as zero if i−j+1 < 1 or if i−j+1 > 3. Observe that (Z)n−1 = In−1(Z).
It suffices to prove that XiYjZ

a
1 Zb

2Z
c
3 ∈ JA whenever a, b, c are non-negative integers

adding up to n− 1.

Step 1: As YjZ1 ∈ JA + (Yj−1δj>1Z2, Yj−2δj>2Z3), without loss of generality we may
assume a = 0.

Step 2: We reduce to the case when c + j ≤ n and j ≤ b + 1.
As YjZ3 ∈ JA + (Yj+1δj<nZ2, Yj+2δj<n−1Z1), it follows by iteration that

YjZ
c
3 ∈ JA + (Yj+l, . . . , Yn) (Z1, Z2)lZc−l

3 ,

for 1 ≤ l ≤ c. Since YnZ3 ∈ JA, without loss of generality one has c + j ≤ n. As
b + c = n− 1, thus without loss of generality, one has j ≤ b + 1.

Step 3: We next reduce to the case c = n− 1. By steps 1 and 2 we may assume that
a = 0 and j ≤ b + 1. We use Lemma 4.1 on the matrix C = Z with r = n− 1:

Yj [2, . . . , n|3, . . . , b+2, b+4, . . . , n+2] ∈
(
Y1[1, . . . , ĵ, . . . , n|3, . . . , b + 2, b + 4, . . . , n + 2]

)
+JA.

But [2, . . . , n|3, . . . , b+2, b+4, . . . , n+2] equals Zb
2Z

c
3+ a homogeneous polynomial of degree

n−1 of strictly higher Z3 degree, and as j ≤ b+1, [1, . . . , ĵ, . . . , n|3, . . . , b+2, b+4, . . . , n+2]
is a homogeneous polynomial of degree n− 1 which is a multiple of Zc+1

3 .
Thus by repeating these three steps we get that c = n − 1, a = b = 0 and j = 1. So

we only have to consider the elements of the form XiYjZ
n−1
3 . If i ≥ 3, then as

XiZ3 ∈ JA + (Xi−1Z2, Xi−2Z1),

and by applying the previous steps (which do not change the index of X at all), we may
reduce the index of X to either 1 or 2. Thus we only have to consider the elements
X1Y1Z

n−1
3 and X2Y1Z

n−1
3 . But then by reducing modulo the elements X1Y1 + X2Y2 +
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· · ·+ XnYn, X2Y1 + X3Y2 + · · ·+ Xn+1Yn of JA, we reduce to proving that XiYjZ
n−1
3 lies

in JA whenever j > 1. But this follows by Step 2.

Proposition 4.4: Every embedded component of JA contains

JA + I2(M)n−2 + I3(M) + (Y )3 + (Z)n + (X)(Y )2 + (X)(Z)n−1.

Proof: By [GS, Theorem 5.2], the intersection of all the minimal components (and all
the minimal primes) is JA + (Y )(Z). It now suffices to prove that the intersection of the
displayed ideal with the minimal components is JA:

(JA + (Y )(Z)) ∩ (
JA + I2(M)n−2 + I3(M) + (Y )3 + (Z)n + (X)(Y )2 + (X)(Z)n−1

)

= JA + (Y )(Z) ∩ (
JA + I2(M)n−2 + I3(M) + (Y )3 + (Z)n + (X)(Y )2 + (X)(Z)n−1

)

⊆ JA + AX + Y AY + ZAZ + (Y )(Z)I2(M)n−2 + (Y )(Z)I3(M) + (Z)(Y )3 + (Y )(Z)n

+ (X)(Y )2(Z) + (X)(Y )(Z)n−1

⊆ JA,

where the second to the last inclusion holds by multihomogeneity and the last inclusion
holds by Propositions 4.2, 4.3, and [GS, Theorem 5.2].

Lemma 4.5: For all r ≥ 1, Xr
n+2Y1Z3 is not an element of JA.

Proof: Without loss of generality we may assume that M is in the normalized form so
that in the first two rows all the coefficients are 1, and also the coefficients in the first
and the last columns are all 1. We then consider a partial Gröbner basis of JA under the
lexicographic order Z1 > Z2 > Z3 > Yn > · · · > Y1 > X1 > · · · > Xn+2. Note that we
only need to consider those elements of the Gröbner basis whose Y and Z degrees are at
most one. Since

M =




X1 X2 X3 · · · Xn

X2 X3 X4 · · · Xn+1

X3 r34X4 r35X5 · · · Xn+2


 ,
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the generators of JA may be written as follows, with leading terms written first:

AX : Y1Z1,
Y2Z1 + Y1Z2,
Y3Z1 + Y2Z2 + Y1Z3,
YiZ1 + Yi−1Z2 + r3iYi−2Z3, i = 4, . . . , n
YnZ2 + r3,n+1Yn−1Z3,
YnZ3;

AY : X1Z1 + X2Z2 + X3Z3,
XjZ1 + Xj+1Z2 + r3,j+2Xj+2Z3, j = 2, . . . , n− 1
XnZ1 + Xn+1Z2 + Xn+2Z3;

AZ : XnYn + · · ·+ X1Y1,
Xn+1Yn + · · ·+ X2Y1,
Xn+2Yn + r3,n+1Xn+1Yn−1 + · · ·+ r34X4Y2 + X3Y1.

The element Xr
n+2Y1Z3 can only be a multiple of the term Y1Z3 appearing in AX3 or of the

term Xn+2Z3 appearing in AYn . Neither of these two terms is a leading term. In order to
make Xr

n+2Y1Z3 a leading term of some element in a Gröbner basis, that term will either
come from Xr

n+2AX3 or from Xr−1
n+2Y1AYn .

Assume that Xr
n+2Y1Z3 comes from Xr

n+2AX3 . As the leading term of AX3 is Y3Z1,
we first of all need to find an element g of the Gröbner basis whose leading term divides
Xr

n+2Y3Z1. This is in order to keep the possibility of Xr
n+2Y1Z3 dividing one of the terms

in the resulting S-polynomial. As the S-polynomial of AX3 with itself is 0, the leading
term of g necessarily divides either Xr

n+2Y3 or Xr
n+2Z1. In the former case, g must be an

element of AZ , and in the latter case, an element of AY . But the only leading terms of
AZ with Y -degree at most 1 come from the polynomials as in Lemma 4.1 when applied to
the matrix C = Xt, Vi = Yi:

Yn[.|.], Yn[., .|j, n], j < n, and Yn−1[., ., .|j, n− 1, n], j < n− 1,

and similarly the only leading terms of AY with Z-degree at most 1 come from

Z1Xi, i ≤ n,Z2[2, 3|., .], and Z3[1, 2, 3|., ., .],

and none of these divides Xr
n+2Y1Z3 as desired.

So necessarily Xr
n+2Y1Z3 comes from Xr−1

n+2AYn . As the leading term of AYn is XnZ1,
as before we need to find an element g of the Gröbner basis whose leading term divides
Xr−1

n+2XnZ1. As the S-polynomial of AYn with itself is 0, the leading term of g necessarily
divides either Xr−1

n+2Xn or Xr−1
n+2Z1. Of course the former is impossible. In the latter case,

g is an element of AY , and as above, this is impossible.
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The following is a partial confirmation of the pattern conjectured in [BBG] and de-
scribed at the beginning of this Section.

Theorem 4.6: If I2(M) is not prime, then the set of associated primes of JA consists
of the minimal primes of JA, the minimal primes over I2(M) + (Y ,Z), and the minimal
primes over I1(M) + (Y ,Z).

Proof: By Proposition 4.4 we know that every embedded prime contains all the Yj , all the
Zk and I2(M). When I2(M) is not prime, one knows that an ideal containing I2(M) +
(Y ,Z) has dimension at most 1; therefore, the embedded primes may have dimension 1 and
0. By quasihomogeneity, the only one possibility for dimension 0 is the irrelevant maximal
ideal and in [BBG] it is proved that it is an associated prime. When the dimension is 1
we have to deal with the minimal primes over I2(M) + (Y ,Z).

Let P be a minimal prime over I2(M) + (Y ,Z). Suppose that P is not associated
to JA. By possibly rotating M by 180 degrees and appropriately renaming the variables,
by Theorems 3.1, 3.2, 3.4, we may assume that P = (X1, . . . , Xn+1) + (Y ,Z). Then
by Proposition 4.4, JA is the intersection of the minimal components with a possible
(X2, . . . , Xn+2)+(Y ,Z)-primary component and a possible (X,Y , Z)-primary component.
As by [GS], the intersection of the minimal components is JA + (Y )(Z), this means that
for some large r, Xr

n+2Y1Z3 ∈ JA. But this contradicts the previous Lemma.
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