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Abstract

Classical mereology is a formal theory of the part-whole relation, es-
sentially involving a notion of mereological fusion, or sum. There
are various different definitions of fusion in the literature, and var-
ious axiomatizations for classical mereology. Though the equiva-
lence of the definitions of fusion is provable from axiom sets, the
definitions are not logically equivalent, and, hence, are not inter-
changeable when laying down the axioms. We examine the relations
between the main definitions of fusion and correct some technical er-
rors in prominent discussions of the axiomatization of mereology. We
show the equivalence of four different ways to axiomatize classical
mereology, using three different notions of fusion. We also clarify the
connection between classical mereology and complete Boolean alge-
bra by giving two “neutral” axiom sets which can be supplemented
by one or the other of two simple axioms to yield the full theories;
one of these uses a notion of “strong complement” that helps expli-
cate the connections between the theories.

Note: This paper is a draft of “What is Classical Mereology?”
in Journal of Philosophical Logic, c© Springer 2008. The original
publication is available at www.springerlink.com, or at
http://dx.doi.org/10.1007/s10992-008-9092-4
The idea of a mereological fusion or mereological sum has become a common-
place in philosophical literature. Those who use the notion casually may
do so without giving an exact definition. Some very rough explanation
like “the fusion of some things is what you get when you put them to-
gether” is enough for some purposes. Something more substantial and
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precise is often wanted, however, for there are appeals to such principles
as

If every proper part of x is part of y, and every proper part of y
is part of x, then x = y

which are supposed to follow from some axioms in which the notion of
fusion plays a central role.

When definitions of fusion are given, they are not always the same. In
fact, there are many slightly different definitions, of which two are quite
common in the literature. These two definitions are often run together, but
they are logically distinct. It is true that once we have “the correct” axioms
in place, or any equivalent set of axioms, then the two definitions can be
shown to be equivalent (i.e., their equivalence logically follows from those
axioms). But when actually giving an axiomatization intended to yield
“the correct” theory, which we will call classical mereology, the difference
matters. There is fairly universal agreement on what the theorems of classi-
cal mereology ought to be—not on whether they are true, but on what they
are. (Roughly, they are the same as the theorems derived from the axioms
for complete Boolean algebra, except without a zero element.) The differ-
ence between the definitions of fusion makes for a difference in how one
can get those theorems. It turns out that Peter Simons’ system SC in Parts
does not suffice to get the desired theorems. Casati and Varzi’s definition
of system GEM in Parts and Places suffers from an unintended ambiguity;
on one disambiguation, we do get the desired theorems, on the other, we
do not. These mistakes, first addressed in the literature by Carsten Po-
tow in [10], are fairly easily fixed, however, once they are noticed: we will
see that, as in [10], one way is to replace a weak “supplementation” ax-
iom with a stronger one; we also show that another way is to replace the
“weaker” definition of fusion with the other one.1

We will also consider an alternative axiom set that does not directly use ei-
ther common definition of fusion; rather it splits a fusion existence axiom
into two parts and uses the notion of minimal upper bound in place of fu-
sion, gaining, perhaps, in intuitive appeal what it loses in brevity. Using a
related axiom set, we will give a very clear picture of the close connection

1I wish to express my gratitude to Pontow for very useful comments on an earlier
draft of this paper.
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between mereologies and complete Boolean algebras. The connection was
known to Tarski (see [15] and [16]) and has been given a recent treatment
in [11]. The treatment given here differs from others in that it crucially
uses the concept of a “strong complement” in the axiomatizations, which
sheds an alternative light on the roles of the “supplementation” axioms
of mereology and the complement and “distribution” axioms of Boolean
algebra. Along the way, we will correct an axiomatization found in the
work of Fred Landman and in the work of Manfred Krifka that uses the
notion of minimal upper bound.

We presuppose no substantial knowledge of mereology or Boolean alge-
bra, and the technical arguments are intended to be accessible to non-
specialists interested in a fairly self-contained, careful treatment. The pa-
per is almost purely technical in nature; we do not address the question of
whether classical mereology is a plausible theory.

Part One: Definitions of fusion

We begin with an explication of the devices needed for a formal language
in which classical mereology might be expressed. Suppose we have a
first-order (or higher) language2 that includes a special 2-place predicate
≤, meant to represent “is part of” or “is a part of”.3 Thus ∀x(Cat(x) →
∃y(Tail(y) ∧ y ≤ x)) says that every cat has a tail as part. For any terms s

2Strictly speaking, when we get to axioms and theorems, we will be interested in not
a single axiomatic theory of mereology, but rather any system that results from introduc-
ing a new relation symbol ≤ into a system by (augmenting its language and) adding
certain axioms and axiom-schemes. For our model examples, below, we assume we are
working in pure unrestricted mereology: pure, meaning ≤ is the only non-logical expres-
sion in the language; unrestricted meaning that the quantifiers of the mereology axioms
are unrestricted. For most of our purposes, we may assume unrestrictedness (the uni-
form imposition of explicit restriction being a routine matter) and what other expressions
there are in the language will not matter. For informal examples, we will often assume
our language contains predicates like ‘is a cat’ and ‘is a dog’. The availability of set-theory
or higher-order logical devices in the language will be addressed below.

3Sharvy suggests in [13] (cf. [12]) that “is part of” and “is a part of” have rather
different meanings, but classical mereology treats a single relation.
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and t, pick a variable v not free in s or in t and stipulate:4

s ◦ t abbreviates ∃v(v ≤ s ∧ v ≤ t)

s o t abbreviates ¬ s ◦ t

s � t abbreviates s ≤ t ∧ ¬ s = t

‘101 ◦ 102’ can be paraphrased as ‘Rooms 101 and 102 have a common part’
or ‘Rooms 101 and 102 overlap.’ ‘101 o 102’ says that they do not overlap,
or are disjoint, and ‘102 � 101’ says that Room 102 is a proper part of
room 101; it is a part, but is not the whole.5 One could, instead, take ◦ or
o or � as primitive, and define ≤ and the others in terms of the primitive,
but this substantially affects the axiomatization, as we will see later in this
paper. It seems most natural to take ≤ as primitive.

Schematic fusion-definitions

We now look at the two common definitions of fusion. According to the
first, roughly put, a fusion of the F’s is a thing x such that for every thing
y, y overlaps x iff y overlaps one of the F’s. We will first look at a way
of formalizing this that uses an open sentence Fx in place of the notion of
“the F’s.”

We will use the expression φ(y) to stand for any wff (well-formed formula)
whose free variables may or may not include y, and so on for any variable.
For any variable x, any wff φ(x), and any term t distinct from the variable
x, find a variable y that does not occur free in φ(x) or in t, and stipulate
that

SCHEMATIC TYPE-1 FUSION
Fu1(t, [x | φ(x)]) abbreviates ∀y(y ◦ t ↔ ∃x(φ(x) ∧ y ◦ x))

(read “t is a fusion of the first type, of the condition φ(x)” or, perhaps, “t
fuses the φ’s”). For example,

4We will use lower-case italic letters (s, t, x, etc.) as meta-language variables meant
to stand for terms and variables of the object language; the object language will be in
sans-serif font (x ≤ y, etc.). We will be a little loose with use/mention.

5One might complain about the fact that in formal mereology, everything is treated
as part of itself. The usual reply is that this is a mere formal convenience, eliminable in
principle.
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Fu1(a, [x | ∃z(Cat(z) ∧ Loves(x, z))])

abbreviates

∀y(y ◦ a ↔ ∃x(∃z(Cat(z) ∧ Loves(x, z)) ∧ y ◦ x))

and says that a fuses (in the first sense) the things that love a cat.

Note that we do not, with our notation, take for granted that there is at
most one fusion of cat-lovers. Roughly put, “fusing” is a relation between
a thing (the fusion) and a condition, or between a thing (the fusion) and
some things (that get “fused”). But since we here assume only a first-order
language, no such “relation” can be explicitly mentioned; its logical type
would be beyond the type associated with first-order relation symbols.
Note, for example, that though we know how to say a fuses the cats, it
is not immediately evident how we might say that a fuses some cats: we
want something like

∃ψ (∃x ψ(x) ∧ ∀x(ψ(x) → Cat(x)) ∧
∀y(y ◦ a ↔ ∃x(ψ(x) ∧ y ◦ x)))

but, of course, this is nonsense, unless ‘ψ’ here is being used as a second-
order or plural variable; we will consider this possibility in more detail
momentarily.

Further, the expression “the fusion of cat-lovers” has to be justified by
showing that our axioms entail that if some things are fused by z and also
by w, then z = w. Yet, since we are using schemes in a standard first-order
setting, we have another kind of uniqueness for free. If every φ is a ψ, and
vice-versa, then anything that fuses the φ’s fuses the ψ’s:

∀x(φ(x) ↔ ψ(x)) →
∀z (Fu1(z, [x | φ(x)]) ↔ Fu1(z, [x |ψ(x)]))

For the second notion of fusion: for any φ(x), t, x, as above (in the follow-
ing we will often suppress qualifications like these), find y as above and
stipulate

TYPE-2 FUSION Fu2(t, [x | φ(x)]) abbreviates
∀x(φ(x) → x ≤ t) ∧ ∀y(y ≤ t → ∃x(φ(x) ∧ y ◦ x))

(“t is a fusion of the second type, of φ(x)”).

Roughly the second notion of fusion is the one used by Alfred Tarski in
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[16] and David Lewis in [7]. The former notion is used by Simons [14],
(see his SD9 on p. 37) and Casati and Varzi [2], p. 46. Casati and Varzi
seem to assume that the difference does not matter in their reference to
Tarski’s system on p. 47.

Schematic vs. non-schematic

We had to say “roughly” in connection with Tarski and Lewis because
their definitions are non-schematic. It is possible, and sometimes desir-
able6, to use sets, second-order quantification, plural quantification, or
some other auxilliary device in place of the schematic [x | φ(x)] that we
used, to give definitions of fusion to similar effect. E.g., if we were helping
ourselves to set theory, then we would define Type-2 fusion like this:

SET-THEORETIC TYPE-2 FUSION Fu2(t, s) abbreviates
∀x(x ∈ s → x ≤ t) ∧ ∀y(y ≤ t → ∃x(x ∈ s ∧ y ◦ x))

(Tarski gives an obviously equivalent definition of what is called ‘sum’,
in the translation, in [16].) Going the plural route, Lewis would replace
‘x ∈ s’ with ‘x is one of Xs’; one could also aim to get the intended effect
using monadic second-order variables. In the case of sets, it is common
and natural to take the quantifiers in the mereology axioms (formulated in
a language that contains both ≤ and ∈) to be restricted to a set (and thus
to give a single axiom of fusion-existence instead of an axiom scheme). To
see the expressive power of the use of auxilliaries, note that it is easy to
say that a is a set-theoretic type-1 fusion of a set of cats:

∃ψ (Set(ψ) ∧ ∃x x ∈ ψ ∧ ∀x(x ∈ ψ → Cat(x)) ∧
∀y(y ◦ a ↔ ∃x(x ∈ ψ ∧ y ◦ x)))

with ‘ψ’ just another first-order variable.

Using auxilliaries, we get an “explicit” definition of the fusion relation-
ship, as in something of the form “for all x and y, x fuses y just in case. . . ”
or of the form “for any x and any Ys, x fuses Ys just in case. . . ” In the case

6And sometimes not desirable. E.g., the nominalist might wish to to avoid commit-
ment to sets in defining fusions; also, one may wish to consider what happens when
unrestricted fusion axiom-schemes are added to something else, like an already given
first-order theory, e.g., a modal formal language, or set theory. Cf. Uzquiano’s discussion
of the difficulties of combining set theory and mereology, in [17].
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of set theory, the fusion relationship acquires the logical type of a stan-
dard relation between objects: fuser and fused are both objects (things in
the range of the first-order quantifiers). With plural logic, the logical type
is of a relation between an object and some objects. As we noted, with a
schematic definition of fusion, no such relation is even hinted at (except
perhaps in our abbreviatory conventions), and no “explicit” definition is
possible: there is nothing to put in the blank in “for all x and all , x fuses

just in case. . . ”7

Thus we have a second kind of ambiguity in the notion of mereological
fusion, among the purely schematic and alternative non-schematic ver-
sions. Fortunately, most of the issues we discuss arise in parallel for all of
these alternatives, so, for our purposes, it usually does not matter which
is chosen. Informally, we will ignore the differences among the schematic,
set-theoretic, and plural versions, when the differences do not matter. For-
mally, we will finesse the issue by adopting the notation

Fu2(t, φx)

in place of the schematic Fu2(t, [x | φ(x)]) or the set theoretic Fu2(t, φ) (where
φ is taken as a first-order variable whose range includes sets). Officially,
φx is an abbreviation to be unabbreviated differently according to whether
one wants to proceed schematically or by sets, or by plural variables, etc.
Similarly for Fu1. For example, Fu1(t, φx) is always partially unabbreviated
as

∀y(y ◦ t ↔ ∃x(φx ∧ y ◦ x)),

but the occurrence of ‘φx’ in this will be (partially) unabbreviated as ‘φ(x)’
on a schematic treatment, and (completely) unabbreviated as ‘x ∈ φ’ on
a set-theoretic treatment (with φ a first-order variable), and as ‘x is one of
the φs’ on a plural variable treatment (with φs a plural variable), and so
forth.

7It is worth noting that even if we use auxilliaries to define fusion, schemes will still
be invoked when the auxilliary theory is axiomatized (as in the Separation scheme of set
theory, or the Comprehension schemes of plural and second-order logic) and the result-
ing notions of fusion will thus logically link back to these schemes. Basically, utilitzing
set theory, our schematic ‘[x | φ(x)]’ will be linked to ‘{x : φ(x)}’; utilizing plural quantifi-
cation, with ‘Xs’ a plural variable, it gets linked to ‘Xs such that x is one of them if and
only if φ(x)’.
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Minimal Upper Bounds

Now, it is easy enough to say ‘z is a fusion of all lovers of cats’, but if we are
required to spell out (in English) the defined notion in terms of the part-
whole relation, we are left with quite a mouthful; without a lot of training,
it is far from easy to understand just what is being said.

There is a perhaps more intuitive notion that, in conjunction with the right
axioms, is basically equivalent: the notion of a minimal upper bound. It is
rather intuitive that if z is the fusion of all cats, then, whatever else it is, it
has every cat as a part. That is to say, it is an “upper bound” on the cats:

∀x(Cat(x) → x ≤ z)

But it is not just any upper bound. According to classical mereology, there
is some object which is the fusion of all objects, call it the universe, and
of which everything is a part. Thus, every cat is part of the universe, so
the universe is an upper bound on the cats. But the fusion of cats should
be something smaller than the universe; no dogs should be part of it, for
example. What’s special about z, the fusion of the cats, is that it is a minimal
upper bound (mub), a part of any upper bound on the cats:

∀w((Cat(x) → x ≤ w) → z ≤ w)

For a compact notation for mubs, stipulate

MIN UPPER BOUND Mub(t, φx) abbreviates
∀x(φx → x ≤ t) ∧ ∀w(∀x(φx → x ≤ w) → t ≤ w)

We use the term minimal instead of least so as not to build uniqueness into
our very definition. The axiom of Anti-symmetry (see below) is enough,
however, to guarantee that any mub of φx is identical with every mub of
φx, so with Anti-symmetry in place, minimal amounts to (uniquely) least.
(The terms supremum and join are sometimes used for formally the same
notion.) We will eventually see that in classical mereology, for any φx, if,
and only if, there is an x with φx, there is exactly one type-1 fusion of φx,
exactly one type-2 fusion, and exactly one minimal upper bound, and they
are all the same thing. Hence, once the right axioms are in place, one could
use the notion of least upper bound (supremum, join) in place of fusion.8

8Acknowledgment is due to Tony Martin for directing my attention to the notion of
least upper bound in connection with the notion of fusion; see footnote 16.
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The use of the notion of least upper bound in place of type-1 or type-2
fusion can be found in the formal linguistic literature in connection with
the semantics of mass nouns and plurals, e.g., in Krifka [3], Landman [4]
and [5], and Link [8]. Landman and Krifka intend to capture classical
mereology with their axiomatizations, but they do not quite succeed, as
we note below when we show how to use mubs in place of fusions to
axiomatize classical mereology. Richard Sharvy uses the notion of least
upper bound as his central fusion-like concept, but favors a notion of quasi-
mereology, which is weaker than classical mereology; see p. 234 of [13] and
footnote 8 of [12].

Part Two: Axiomatizations short of classical mereology

Adopting nomenclature from Casati and Varzi9, let us have the system M
(Ground Mereology) be the set of axioms

Reflexivity ∀x x ≤ x
Anti-symmetry ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)

These say ≤ is (in mathematician’s parlance) a partial ordering.

We will show shortly that the two notions of fusion are not equivalent, in
the sense that we cannot derive, using first-order logic alone

∀z(Fu1(z, φx) ↔ Fu2(z, φx))

without further assumptions. In the presence of Transitivity, however, the
right-to-left direction can be derived. The second type of fusion thus may
be said to be the stronger notion of fusion.

Fusion existence axioms

Consider now the system GM1 that results from adding to M instances
of a scheme (or, if one is using auxiliaries, a single axiom) asserting the
existence of type-1 fusions. For any wff φx, if the variable z is not free in φx

then

9[2] and [18]
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Fusion1E ∃x φx → ∃z Fu1(z, φx)

is an axiom of GM1. (If desired, take universal closures instead of allowing
free variables in the axioms.)

Similarly, GM2 is the system that results from adding an existence axiom
or axiom scheme for type-2 fusions to M:

Fusion2E ∃x φx → ∃z Fu2(z, φx)

GM1 is a very weak system, in the sense that it imposes very little struc-
ture on the part-whole relation; much less than in classical mereology. For
example, the following is a model of GM1:

• •

•

b@@@@@@@
a

c
~~~~~~~

M. 1

In this and our other diagrams, the lines connecting dots are to be thought
of as holdings of a relation R from the lower dot to the higher dot, and
the interpretation of the ≤ symbol in the model is to be the reflexive and
transitive closure of R.

In M. 1, everything overlaps everything, so for any things, any thing is a
type-1 fusion of those things. This example also allows us to see the logical
independence of the two notions of fusion, for it is not a model of GM2.
There is no type-2 fusion of {b, c}10 in this model, for there is nothing of
which both b and c are parts. (The fact that each of a, b, and c is a type-1
fusion of {b, c} underscores the relative weakness of the notion of type-1
fusion.) But GM2 is also quite weak, for the following is a model of GM2:

•

•
b

~~~~~~~
•

c

d@@@@@@@

•

@@@@@@@
a

~~~~~~~

M. 2

10or, if one is being schematic, of the condition x = b ∨ x = c with respect to x when b
is the value of the term b and c is the value of the term c. We will suppress such subtleties
below.
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Again, everything overlaps everything, and everything is part of d, so, for
any things, d is a type-2 fusion of them.

Weak Supplementation

To get to full classical mereology, one course is to add a “supplementation”
axiom that forbids such a situation as that in M. 1, and M. 2, where a is a
proper part of b, and yet b has no other proper parts. The most obvious
one says that a thing with a proper part x has some other, supplementing,
part that is disjoint from x:

WeakSup ∀x∀y(x � y → ∃z(z ≤ y ∧ x o z))

It is called “weak” because there is an alternative that is found in the liter-
ature that is “stronger”; we will return to it later.

Let MM be the system that results from adding WeakSup to M, and let
WGM1 be GM1 plus WeakSup.11 Anticipating, we will call the system
that results from adding WeakSup to GM2, CLM (Classical Mereology).12

Neither M. 1 nor M. 2 are models of MM, since, in both of them, a � b,
but there is no part of b that a does not overlap. It is worth briefly noting
that MM by itself is quite weak, since the following is a model of MM:

• a • b

M. 3

In M. 3, nothing is a proper part of anything else, so WeakSup is trivially
satisfied. Neither fusion axiom is satisfied, however, since there is no fu-
sion for {a, b}.

We now show that WGM1, the result of adding fusion-1 existence and
WeakSup to the partial ordering axioms, yields a surprisingly weak sys-
tem, and does not in fact yield classical mereology. This fact has been ad-
dressed in print by Carsten Pontow, in [10]. Pontow’s discussion considers

11We call it ‘WGM1’ and do not use Casati and Varzi’s term ‘GEM’, since, given the
situation, that term is not well defined by their introduction of it on p. 46 of [2].

12We call it ‘CLM’ instead of ‘CM’ to avoid collision with Casati and Varzi’s use of
‘CM’ for what they call ‘Closure Mereology’.
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only the type-1 definition of fusion, however, and so he (reasonably, given
only the one definition) concludes that “only the Strong Supplementation
Principle is sufficient to fit the theories with a strong kind of extensional-
ity,” and suggests Strong Supplementation in place of WeakSup as the way
to mend the errors in the literature. We explore some different paths here,
on which WeakSup remains central. We tend to “place the blame” more on
the weakness of the type-1 definition of fusion than on WeakSup. Perhaps
it is worth noting that some, including Peter Simons, find WeakSup much
more plausible as a basic truth about the part-whole relation than Strong-
Sup; see, e.g., p. 116 of [14]. Consider first the following two propositions,
desired as theorems of classical mereology,

Product ∀x∀y(x ◦ y → ∃z∀w(w ≤ z ↔ (w ≤ x ∧ w ≤ y)))

and

BLUB ∀x∀y∃z∀w(z ≤ w ↔ (x ≤ w ∧ y ≤ w))

There is a model of WGM1, and hence GM1, in which both Product and
BLUB (binary least upper bound) fail:

• •

•a

c ~~~~~~~
• b

d@@@@@@@

M. 4

Here, c and d each overlap everything, but they have no product, since,
the things that are parts of both of them are {a, b}, and yet every thing
of which both a and b are parts has a part that fails to be a part of both c
and d. To see that Fusion1E is true, we need to show that for each non-
empty subset of the domain (that is definable with a φx; and since the
domain is finite, all of its subsets are definable) has at least one type-1
fusion. Observe that for each singleton, its member is a fusion of it (in fact,
one can see that this is true in all models, since ∀z(z, Fu1(z, [x | x = z])) is
true by first-order logic alone). For any other non-empty set of things in
the domain of the model, if it includes either c or d, then everything in
the domain overlaps a member of the set, and so c fuses the set (and so
does d). The only set left over is {a, b}, but everything overlaps either a
or b, so, again c and d each fuse this set. One can confirm WeakSup by
noting that the only things that are proper parts of anything are a and b,
and everything, that either is a proper part of, has both as parts; since they
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do not overlap, WeakSup is satisfied.

Simons claims that his system SC, which is equivalent with WGM1, yields
both Product and BLUB, and, indeed, a host of other things that do seem
to be theorems of CLM.13 Casati and Varzi claim that GM1 is enough to
get Product.14 This is the source of their claim that WGM1 is equivalent
with the system SGM1 that results from adding the axiom StrongSup (dis-
cussed below) to GM1. These three claims are incorrect. In the next part,
we will show that SGM1 is indeed equivalent with CLM (= GM2 + Weak-
Sup). Thus, classical mereology is indeed obtained by adding, to the par-
tial ordering axioms, a fusion-existence axiom (scheme) and a supplemen-
tation principle: if we use type-1 fusion, we need StrongSup, but if we use
type-2 fusion, we need only WeakSup.

One might wonder whether Product is a theorem of GM2 (partial ordering
plus fusion-2 existence); we have not shown otherwise, since M. 4 is not a
model of GM2, since {c, d} has no type-2 fusion, and Product holds in M.
2. But it can be “extended” to M. 5, a model of GM2 in which Product fails
(for {c, d}):

•

•

~~~~~~~
•

e@@@@@@@

•a

c oooooooooooooo • b

d
OOOOOOOOOOOOOO

M. 5

Part Three: Classical mereology

Now, M.5 is not a model of CLM, since, in it, c is a proper part of e and
yet both of them overlap everything, so WeakSup fails. If we add a proper
part to e that does not overlap c, so as to try to satisfy WeakSup while
leaving the failure of Product in place, we will find that we need more
fusions, involving the new thing and the old things, which WeakSup will
then constrain; a lot of structure is imposed. Product cannot be made to

13See pp. 37–40 of [14].

14[2] p. 46. Cf. [18] section 4.2.
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fail. We will show that in CLM, Fusion2E and WeakSup work together to
yield the uniqueness of type-2 fusions. This is a powerful theorem, and a
linchpin for other strong theorems; Product, for example, is a fairly easy
consequence. This uniqueness theorem is a corollary of our main theorem,
which says that type-2 fusions are minimal upper bounds.

Before proceeding to the main theorem, it helps to note first a minor lemma
that is often wanted in reasoning about fusions:

Overlap Lemma ∀z∀y(∃x(x ≤ y ∧ x ◦ z) → y ◦ z)

This lemma is easy to prove using Transitivity; the following diagram
gives one a feel for it:

•

•

y@@@@@@@
•

•

@@@@@@@

z
~~~~~~~

Now suppose that we have ∃x φx. By Fusion2E, we will have a fusion z of
the φ’s. We can prove that this object is a minimal upper bound: it is part
of anything that all the φ’s are part of.

Formally, given CLM, for any variable x and any φx, and any variables y
and z that do not occur free in φx, we can derive15 (the universal closure
of)

Fu2MUB ∀z(Fu2(z, φx) → Mub(z, φx))

Sketch of derivation: Pick an arbitrary z with Fu2(z, φx). After unabbrevia-
tion, it should be clear that the main task is to show that, given an arbitrary
upper bound y, i.e., a y with ∀x(φx → x ≤ y), we have z ≤ y.

Use Fusion2E to obtain v with Fu2(v, [x | x = y ∨ x = z]) (or Fu2(v, {y, z})
etc.). Get that z ≤ v. If v = y we will have the desired formula z ≤ y . So
suppose for reductio that y 6= v. Since y ≤ v, y � v; apply WeakSup to get s

15Strictly: if we are using the schematic Fusion2E axiom, then we can derive this, within
any standard deduction system that includes first-order logic. If we are using a non-
schematic formulation, then we must take advantage of certain basic assumptions about
the replacements of the schemes (the sets or pluralities or what have you) e.g., that there
is a set {y, z}. Similar remarks go for all of our derivations below.



What is classical mereology? DRAFT 15

with s ≤ v and y o s. Since s ≤ v, by the definition of type-2 fusion we can
get that s ◦ y ∨ s ◦ z; the former disjunct is ruled out, so s ◦ z. Get w with
w ≤ s and w ≤ z.

Since w ≤ z, unabbreviating and applying the fusion clause on z in our
assumptions, get ∃x(φx ∧ w ◦ x), and instantiate to a so we have φa ∧ w ◦ a.
Since φa, given our assumption that y is an upper bound on the φs, a ≤ y.
But w ◦ a; from these last two we can get that w ◦ y, applying the Overlap
Lemma. But w ≤ s; this leads to a contradiction by another application
of the lemma, since we had y o s above. So, by reductio, y = v; thus z ≤ y;
universally generalize and we are done. �

In CLM, type-2 fusions are minimal upper bounds. It is basically built into
the definition of type-2 fusion that a type-2 fusion is an upper bound; it is
not trivial that they are minimal, and that is what WeakSup is for.16

Since we have Anti-symmetry, there is at most one minimal upper bound
for any φx. So, as a corollary to Fu2MUB, we get a crucial theorem-scheme:

Fu2Uniqueness ∀z∀y((Fu2(z, φx) ∧ Fu2(y, φx)) → z = y)

This justifies our speaking of the mereological fusion of φx. Now, in CLM
one can derive that if ∃x∃y x 6= y then there is no mub for φx unless ∃x φx
(see the discussion below of the connection to Boolean algebras). Hence
we can derive a slightly qualified equivalence between type-2 fusion and
mubs: for any φx,

(∃x∃y x 6= y ∨ ∃x φx) → ∀z(Fu2(z, φx) ↔ Mub(z, φx))

Using mubs instead of fusions

The theory of CLM could have been axiomatized using the notion of min-
imal upper bound instead of fusion, given a couple of minor adjustments.
First, notice that we can re-locate the “difference” between the definitions
of minimal upper bound and of type-2 fusion, extracting a somewhat intu-
itive axiom to the effect that if something is part of a minimal upper bound
on the φ’s, then it overlaps some φ.

16 Thanks to Tony Martin for helpfully suggesting that Fu2MUB be brought to the
center of the discussion of CLM. This suggestion re-oriented and simplified an earlier
presentation of mine of the route to Fu2Uniqueness in CLM.
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Filtration ∀y∀z((y ≤ z ∧ Mub(z, φx)) → ∃x(φx ∧ y ◦ x))

Now suppose that we modify CLM by taking Filtration as an axiom, and
replacing Fusion2E with

MubE ∃x φx → ∃z Mub(z, φx).

A little unabbreviation shows that Fusion2E is then easily derivable.

In fact, it is easy to see that we can then drop Reflexivity and Anti-symmetry,
as derivable. For the former, given y, get a z with Mub(z, [x | x = y]) (or
Mub(z, {y})); y ≤ z, so if y 6= z, y � z; apply WeakSup and then Filtration
to get a contradiction. The latter can be had by a fairly simple reductio and
applications of WeakSup, Reflexivity and Transitivity. These last two ar-
guments are also possible in CLM, of course, but they are perhaps a little
easier to understand when Fusion2E is split into Filtration and MubE.

The set-theoretic version of the modified axiom set (partial ordering, or
just Transitivity, plus WeakSup, Filtration, and MubE) is close to Land-
man’s definition of a part-of structure.17 Almost the same definition is
used by Krifka for his notion of lattice sort.18 These definitions are clearly
intended to generate classical mereology, since the authors (incorrectly)
claim that the defined structures are, in general, complete Boolean alge-
bras with the zero element removed.

Basically, a part-of structure is defined as a structure that satisfies the partial-
ordering axioms, set-theoretic MubE (the existence of a mub (join) for each
non-empty set), WeakSup, and something called Distributivity which gov-
erns mubs of two-element sets (binary joins). Where x + y denotes the z
with Mub(z, {x, y}), the axiom is

x ≤ y + z → (x ≤ y ∨ x ≤ z ∨ ∃y′ ≤ y ∃z′ ≤ z(x = y′ + z′)).

This does not by itself yield Filtration (though it does if the domain is
finite) and we do not get classical mereology.

To see this, let A be any infinite set and let B be

{S|S ⊆ B and S is non-empty and finite } ∪ {A}.

17See p. 315 of [4] (cf. the beginning of Lecture Four of [5] and the use of Landman’s
notion by Link in Chapter 8 of [9]).

18In [3].
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Then 〈B,⊆〉 is a part-of structure, but not a model of classical mereology.19

If Distributivity is expanded to an infinitary analog, then it is equivalent
(in the presence of the other axioms) with the set-theoretic version of Fil-
tration. Letting

∨
φ denote the z such that Mub(z, φ), the axiom would

be:
z ≤

∨
φ → ∃ψ(∀y(ψy → ∃x(φx ∧ y ≤ x)) ∧ z =

∨
ψ).

This proposition is not really statable with schemes (because of the ∃ψ)
though one can use Filtration to show that

[y | ∃x(φx ∧ x ◦ z ∧ Mub(y, [w |w ≤ x ∧ w ≤ z]))]

“witnesses” the requirement.20 For simplicity and neutrality (with respect
to the scheme-versus-set issue) Filtration seems to be the superior axiom.

Strong Supplementation

We have seen that we get the desired uniqueness of fusions with the type-2
notion in CLM, using WeakSup. Consider now a stronger supplementa-
tion proposition:

StrongSup ∀z∀y(∀x(x ≤ y → x ◦ z) → y ≤ z)

We can show that StrongSup is derivable in CLM. We could show that
CLM yields Product, and take advantage of Simons’ derivation of Strong-
Sup from Product and WeakSup21, but we can avoid a direct appeal to
WeakSup and proceed by taking advantage of Fu2Uniqueness, and the
following easy lemma, to the effect that, put set-theoretically, x fuses {x};

Lemma 2 ∀x Fu2(x, {x})

19The latter can be verified by noting that Filtration will fail. One can express “x is a
singleton in B” with ∀y(y ≤ x → y = x); now if x is a singleton, consider the lub of all
singletons not identical with x. It would have to be A; but x ≤ A and yet x does not
overlap any of these things.

20The easiest proof of this makes use of StrongSup, to be introduced immediately.

21See pp. 30–31 of [14].
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Sketch of derivation of StrongSup in CLM: take arbitrary a and b and suppose
that ∀x(x ≤ a → x ◦ b); we want a ≤ b. By Fusion2E, ∃z Fu2(z, {a, b}); call
it z. We will then show that Fu2(z, {b}); once we have that, given Lemma 2
and Fu2Uniqueness, we then get that z = b, and since a ≤ z (easily), a ≤ b
and we are done. To show what we need, we need only show that b ≤ z
and ∀w(w ≤ z → w ◦ b); these are both fairly easily obtained.

Thus we have derived StrongSup from Lemma 2, the partial ordering ax-
ioms (M), and Fu2E and Fu2Uniqueness. The payoff is that, since Weak-
Sup easily follows from StrongSup with an appeal to Anti-symmetry, we
have done half the work needed to show that we may axiomatize CLM
with Tarski’s surprisingly small system from [16] (or a schematic or other
variant), that results basically from taking Fu2Uniqueness as an axiom and
along with Transitivity and Fusion2E. Surprisingly, one can derive Reflex-
ivity and Anti-symmetry from these. A sketch of these derivations, the
other half of the needed work, is here in a footnote.22

Extending WGM1 to classical mereology

Returning to WGM1 (or Simons’ SC, one of the disambiguations of Casati
and Varzi’s GEM), we now show that it can be extended to yield classical
mereology by using StrongSup instead of WeakSup. We do this by show-

22The derivation of reflexivity is somewhat long:
Lemma 1: ∀x x ◦ x

Proof: Let a be the fusion of {x} (i.e. Fu2(a, [y : y = x])). Then x ≤ a and ∀y(y ≤ a →
∃z(z = x ∧ z ◦ y)). Apply the universal to x.

Lemma 2: ∀x Fu2(x, [y : y ≤ x])
Proof: Obviously, every part of x is part of x. If y ≤ x, then y ◦ y, so the second condition
is met.

Theorem: ∀x Fu2(x, [y : y = x])
Proof: Take a with Fu2(a, [y : y = x]). Now we show that Fu2(a, [y : y ≤ x]). (i) if
y ≤ x then y ≤ a (since x ≤ a). And if y ≤ a, then, by def., y ◦ x. So get a z with
z ≤ x and z ≤ y. Since z ◦ z, get a w with w ≤ z. By transitivity, w ≤ y, so y ◦ z. So (ii)
∀y(y ≤ a → ∃z(z ≤ x ∧ y ◦ z)).

So we have Fu2(a, [y : y ≤ x]); by Lemma 2, Fu2(x, [y : y ≤ x]), so by uniqueness of
fusions a = x. (Strictly, we must note also that by Lemma 1, there is some y such that
y ≤ x, in order to apply the uniqueness axiom.)

Anti-symmetry is then fairly straightforward using Lemma 2, since a ≤ b and b ≤ a
together imply ∀z(z ≤ a ↔ z ≤ b).
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ing that GM1 and StrongSup together yield

∀z(Fu1(z, φx) → Fu2(z, φx))

Sketch of derivation: Suppose we have ∀y(y ◦ z ↔ ∃x(φx ∧ y ◦ x)); we want
∀x(φx → x ≤ z) ∧ ∀y(y ≤ z → ∃x(φx ∧ y ◦ x)). The right conjunct
is almost immediate with an appeal to Reflexivity. For the left conjunct,
suppose its negation for reductio, and derive that there is x with φx ∧ ¬ x ≤
z; call it x. Applying the contrapositive form of StrongSup, get that ∃w(w ≤
x ∧ w o z); call it w. Since w ≤ x, we have φx ∧ w ◦ x, so by our original
supposition, w ◦ z; this contradicts w o z, so we are done.

Since StrongSup yields WeakSup (if we also have Anti-symmetry), clas-
sical mereology can be axiomatized with GM1 (= partial ordering plus
Fusion1E) plus StrongSup. It is not clear whether Reflexivity and Anti-
symmetry can be dropped, however, for we appealed to each in the rele-
vant derivations above.

Thus we have seen that classical mereology can be obtained by the par-
tial ordering axioms together with a fusion-existence axiom and a supple-
mentation principle: if we use Fusion1E, we need StrongSup; if we use
Fusion2E, we need only WeakSup. Alternatively, we may instead use par-
tial ordering together with WeakSup, Filtration and the existence of min-
imal upper bounds. Further, in classical mereology, the two notions of
fusion and the notion of minimal upper bound all basically coincide; for
any non-empty φx, there is a single thing that is the unique type-1 fusion,
type-2 fusion, and least upper bound for φx.

This completes the main track of this part of the paper; we close this part
with a couple of side tracks.

No obvious Tarski-style system for type-1 fusions

The question naturally arises whether one can axiomatize CLM in some-
thing like the manner of Tarski’s compact axiomatization, but with type-1
fusions instead. Suppose we try the most obvious thing: Transitivity plus
a universal closure for every instance of

Fusion1UE ∃x φx → ∃!z Fu1(z, φx)

(with z not free in φx). This won’t work, because there is a model of these
axioms in which we have one element that is not part of itself.
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Suppose then that we add Reflexivity. Anti-symmetry and WeakSup may
then be derived. Still, we get unwanted models. For example, consider

• i • j • k • o
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M. 6

One can confirm that M. 6 is a model of the resulting system, as follows:
let D be the domain of M. 6, and for each non-empty set S ⊆ D write O(S)
for the set {y ∈ D : there is some x ∈ S with x ◦ y}. Then we have

O({o}) = D
O({ a}) = {a, i, j, o} O({ i}) = D \ {c}
O({ b}) = {b, i, k, o} O({ j}) = D \ {b}
O({ c}) = {c, j, k, o} O({ k}) = D \ {a}

Let F be the set containing these seven sets. For any singletons S, T ⊆ D,
if O(S) = O(T), S = T, hence if any element x of D fuses some non-
empty subset of D, it is the only such element. Thus we have satisfied the
uniqueness part of Fusion1U; so, if we can show that for each non-empty
S ⊆ D, there is something that fuses S, then we are done. We can show
this by noting first that each element fuses its singleton, and second that
O(S ∪ T) = O(S) ∪O(T), while the set F is closed under union. So M. 6 is
a model of the system that strives for Tarskian brevity with type-1 fusion.
It is easy to check that M. 6 is not a model of CLM. One might regard this
as a mark in favor of the type-2 notion.

Alternate primitives

Since the notions we have formalized with ≤, ◦, o, and the fusion notations
are all inter-related, it is possible to take any of them as primitive and
define the others with respect to it. In a sense, the choice is a mere matter
of convenience; but the details of axiomatization of a theory equivalent
with CLM are rather different.

An illustrative example is the Calculus of Individuals of Leonard and
Goodman [6]. Here, o is taken as primitive, and x ≤ y is defined as
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∀z(z o y → z o x), and x ◦ y is defined as we did above. The notion of
fusion that they give, which we notate with Fulg is as follows:

Fulg(t, φx) abbrev. ∀y(y o t ↔ ∀x(φx → y o x))

(They use classes for the φx, rather than schemes.)

Since some quantification is built into the definition of ≤, we get Transitiv-
ity and Reflexivity as a matter of mere first-order logic. If we add Leonard
and Goodman’s second axiom (Anti-symmetry) and third axiom

∀x∀y(x ◦ y ↔ ¬(x o y))
(which was true by definition in our systems) we get significant further
theorems, including WeakSup, the equivalence of Fulg(t, φx) with each of
Fu1(t, φx) and Fu2(t, φx), uniqueness for LG-Fusions, i.e.,

∀y∀z(Fulg(y, φx) ∧ Fulg(z, φx) → y = z),

and, hence, Fu2Uniqueness (and the similar result for type-1 fusions).
When we add their first axiom, a fusion-existence axiom

∃x φx → ∃z Fulg(z, φx)

we get that Fulg(t, φx) is equivalent with Mub(t, φx) and, hence, we get all
the theorems of CLM.

Part Four: Strong complements and Boolean algebra

We now show the close connection between classical mereology and the
notion of a complete Boolean algebra. The basic result, which seems to go
back to [15], is roughly this: every complete Boolean algebra is a classical
mereology, except for the presence of a single extra element called 0, an
element that is a part of everything; and every classical mereology is a
complete Boolean algebra, except for the presence of the 0 element. (In
classical mereology, there is no 0, unless there is only one thing; one way
to see this is that every object would then be a fusion of {0}; another is
that WeakSup fails, since 0 would be a proper part of anything else, but
overlaps everything.)

A qualification on the claim of near-equivalence is in order, regarding the
way that the “completeness” of complete Boolean algebra is conceived.
The standard conception of completeness is that every subset of the domain
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of the algebra (the domain itself being conceived as a set) has a minimal
upper bound. This requirement is intended to be strictly stronger than the
analogous requirement imposed by the schematic version of CLM; with the
axiom-scheme we require, in effect, minimal upper bounds only for those
subsets of the domain that are definable in the language whose formulas
are in the “substitution range” for the scheme. Thus there are set-theoretic
models of pure first-order schematic CLM whose structures are not stan-
dardly complete Boolean algebras, even after a 0 is added. (See [11] for
a careful discussion of this fact.) Here we have a mismatch between two
ways of getting at “every subset of the domain.” Schemes get at them only
indirectly, as correlates to formulas, and hence only countably many are
addressed; the standard notion of complete Boolean algebra gets at them
directly, from within the set theory. However, as our discussion will make
clear, if the mechanisms for generality are matched, the basic equivalence-
except-for-0 result holds perfectly.

First, we will construct a “neutral” axiom set that effectively contains the
common core of mereology and complete Boolean algebras. If one adds
to the neutral axioms the axiom that if there is more than one thing, then
there is not a 0 element, the result is CLM; if one adds the axiom that there
is a 0 element, the result is (schematic or, with sets, standard) complete
Boolean algebra. We will also eventually relate CLM to (not necessarily
complete) Boolean algebra.

Next, we will find an alternative neutral axiom set, which will make cen-
tral use of a new notion: that of the strong complement of an object: basically,
the strong complement of x is something y such that (1) y is disjoint from
x; (2) everything disjoint from x is part of y; and (3) everything disjoint
from y is part of x. Recall that CLM can be axiomatized with the com-
bination of Reflexivity, Anti-symmetry, Transitivity, MubE, WeakSup, and
Filtration, and that in fact, Reflexivity and Anti-symmetry can be derived
from the other four. It turns out that if we bring Anti-symmetry back in as
an axiom, then we can basically capture the combined effect of WeakSup
and Filtration with a single axiom about strong complements. The axiom
says that almost everything has a strong complement: the only exception
is the fusion of all things.

While the classic [15] and the recent [11] also address the near-equivalence,
our use of the notion of strong complement is, as far as the author knows,
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unique. The comparison with (not necessarily complete) Boolean algebra
and complete Boolean algebra is facilitated by using this notion, and we
are led to non-standard axiomatizations of both of those theories, as well
as a non-standard axiomatization of CLM.

The neutral axiom set

Our first task is to display a neutral axiom set that is obviously very close
to CLM, and which can be slightly supplemented to yield either CLM or
complete Boolean algebra.

For neutrality, we must be careful about our defined symbols. We will use
the defined notion of Mub exactly as we did above. Since we do not want
to rule a 0 in or out, we will focus on a predicate 0 (rather than a name)
defined as follows:

∀x (0(x) ↔ Mub(x, [y | y 6= y]))

(or use the empty set or the like if one is using auxiliaries). It is a conse-
quence of the definition alone that

∀x∀y(0(y) → y ≤ x)

The definition of proper part (�) remains the same. We use revised no-
tions of overlap and disjointness as follows:

s • t abbrev. ∃x(¬ 0(x) ∧ x ≤ s ∧ x ≤ t)

and

s �� t abbrev. ¬ s • t

(In a Boolean algebra, there is a zero element, so if we use the old notion
of overlap, everything overlaps everything, and nothing is disjoint from
anything.)

The neutral axiom set N is:

ZeroU ∀x∀y(0(x) ∧ 0(y) → x = y)
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
WeakSupN ∀x∀y((¬ 0(x) ∧ x � y) → ∃z(¬ 0(z) ∧ z ≤ y ∧ x �� z))
FiltrationN ∀y∀z((¬ 0(y) ∧ y ≤ z ∧ Mub(z, φx)) →

∃x(φx ∧ y • x))
MubE ∃x φx → ∃z Mub(z, φx)
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To get CBA (complete Boolean algebra), it suffices to add

Zero ∃x 0(x)

to N.

To get CLM, add

NoZero ∃x∃y(x 6= y) → ∀x ¬ 0(x)

to N.

As in CLM, we may derive Reflexivity and Anti-symmetry in N. The deriva-
tions are as before, with the necessary adjustments to take account of the
possibility that a thing be 0. (Alternatively, if we took Anti-symmetry as
an axiom, then we would not need ZeroU.)

It is easy to confirm that the addition of NoZero to N is equivalent with
CLM. If we assume ∃x∀y(x = y), then this is straightforward (note that
Zero is then derivable); otherwise, derive NoZero in CLM and then derive
(in each system) that the new definitions of overlap and disjointness are
equivalent with the old ones, and then similarly for the axioms. To show
the connection with Boolean algebra will require more work, which we
postpone for the moment.

N2

First, we introduce and show the utility of the notion of a strong comple-
ment. Consider the following variant of N that uses strong complements
(with the neutral definitions of overlap and disjointness): First define 1(x)
as ∀y y ≤ x. N2 is then Anti-symmetry, Transitivity, MubE, and

Strong Complement ∀x((¬ 1(x) →
∃z(z �� x ∧

∀y((y �� x → y ≤ z) ∧ (y �� z → y ≤ x))))

N from N2

We may derive N from N2. It is easy to see that there is a unique z with 1(z)
(viz. the z with Mub(z, [w|w = w])), so we may use ‘1’ as if it were a name.
Use the expression ‘a∗’ for “the strong complement of a,” as asserted to
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exist by Strong Complement, when it is clear that a is not 1.23 (Deduce
that strong complements are unique with anti-symmetry; similarly, get
ZeroU.)

Reflexivity: Given x with x 6= 1 (otherwise x ≤ x), get strong complement
x∗ with x∗ �� x. Since ∀y, if y �� x∗ then y ≤ x, and x �� x∗, x ≤ x.

Using the definition of o as before, note that 0(x) implies x �� y and ¬ x o y.
Using reflexivity, note that if x ≤ y and ¬ 0(x), then x • y. Next deduce
these Easy Lemmas:

0(a∗) ↔ a = 1; a∗ = 1 ↔ 0(a);
a ≤ b → b∗ ≤ a∗;
a∗∗ ≤ a; a ≤ a∗∗; a = a∗∗;
b∗ ≤ a∗ → a ≤ b; a ≤ b∗ ↔ b ≤ a∗; a∗ ≤ b ↔ b∗ ≤ a.

Though WeakSupN may be given a more direct derivation, some of the
naturalness of N2 is revealed by first deriving StrongSupN and inferring
WeakSupN by applying anti-symmetry.

StrongSupN ∀x∀y(∀b(b 6= 0 ∧ b ≤ x → b • y) → x ≤ y)

StrongSupN follows easily from

Strong Overlap Lemma: ∀x∀y(∀b(b • x → b • y) → x ≤ y)

To show this lemma, assume ∀b(b • x → b • y). We may suppose
that y 6= 1, and thus (by an Easy Lemma) ¬ 0(y∗). Now, if x = 1, then:
∀z (¬ 0(z) → z • x), hence y∗ • x, so y∗ • y; contradiction. Conclude x 6= 1.
By contraposition, ∀b(b �� y → b �� x). But y∗ �� y, so y∗ �� x, hence y∗ ≤ x∗.
So, using an Easy Lemma, x ≤ y.

FiltrationN: Given y with ¬ 0(y) and y ≤ z and Mub(z, φx). (Note that then
¬ 0(z) and that ∃x(φx ∧ ¬ 0(x)). Also, we may suppose that for no x of φx
do we have x = 1, since, if so, we are done.) Suppose for reductio that for
each x of φx with ¬ 0(x), ¬ x • y. Then, for each such x, y �� x, so y ≤ x∗.
Thus for each such x, x ≤ y∗; (and 0(b) implies b ≤ y∗) so each x of φx is
≤ y∗. Hence z ≤ y∗. Hence y ≤ y∗, so y • y∗; contradiction.

Thus N can be derived from N2.

23Officially, uses of ‘1’, ‘a∗’, and the like are to regarded as definite descriptions, which
are abbreviatory devices to be handled in the manner of Russell’s theory of descriptions.
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N2 from N

We may go the other way.

First derive the Strong Overlap Lemma (SOL) (stated above): Assume
∀b(b • x → b • y). Now if 0(x) then x ≤ y, so we may assume not.
Now, use MubE to get a with Mub(a, [z|z ≤ x ∧ z ≤ y]. Get that ¬ 0(a)
(starting from x • x). Get that a ≤ x and a ≤ y by design of a. Now sup-
pose for reductio that a � x (so that when done we will conclude a = x and
hence x ≤ y, as desired). Use WeakSupN to get w with ¬ 0(w) and w ≤ x
and w �� a. Since w • x, w • y; get u with ¬ 0(u) and u ≤ w and u ≤ y. u ≤ x,
as well, so u ≤ a by design; but then we have that a • w, a contradiction.

Next, infer StrongSupN from SOL, and then, to derive Strong Comple-
ment: Given x with x 6= 1. We must show that x “has a complement” as
the axiom describes. If 0(x), it is easy to see that 1 is the desired comple-
ment. Otherwise: we know that x � 1, so, by WeakSupN, ∃y y �� x with
¬ 0(y). So get z with Mub(z, [w|w �� x]). z is the desired complement. If
z • x, then get some y (¬ 0(y)) with y ≤ x and y ≤ z; by FiltrationN, y • w
for some w with w �� x; but since (¬ 0(w) and) w • y and y ≤ x, we then have
w • x; contradiction. Thus z �� x as desired. Next, given arbitrary y with
y �� x, y ≤ z by design. Next, given arbitrary y with y �� z, if 0(y) then y ≤ x;
else: for any w with ¬ 0(w) and w ≤ y, ¬w ≤ z, so, by design, ¬w �� x.
Hence w • x. Now apply StrongSupN and conclude y ≤ x.

NoZero is an easy theorem of CLM. Thus we may conclude that if we add
NoZero to N2, the result is equivalent with CLM. Thus we have an alter-
nate axiomatization of CLM, in which Strong Complement, (with the aid
of Anti-symmetry) basically has the effect of the combination of WeakSup
and Filtration. (We can replace ‘��’ with ‘o’ in this axiom set, as in the “Fifth
way” in the summary below.)

Boolean Algebra

Traditionally, there are two different ways to give axioms for (not neces-
sarily complete) Boolean algebra. (See, for example, the first two sections
of the first chapter of [1].)

The “algebraic” way, suggestive of the connection with the Boolean con-
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nectives of propositional logic, involves taking as primitive the constants
0 and 1, a binary operation called “join” (symbolized x + y or x ∨ y), a
binary operation “meet” (symbolized x · y or x ∧ y), and a singulary op-
eration of “complementation” (symbolized x∗ or ¬ x). The axioms then
constrain the behavior of the operations on arbitrary items in the domain
(and on 0 and 1). x ≤ y is then defined as x + y = y or as x · y = x.

The “relational” way is to take ≤ as primitive, and define 0 and 1 and
all of the algebraic operations in terms of it; e.g., x + y is defined as the
least upper bound or supremum of x and y, while x · y is defined as their
infimum. Such definitions have to be justified by the axioms stated in
terms of ≤. In the case of a not-necessarily-complete Boolean algebra, we
only care about least upper bound and greatest lower bound on pairs of
elements. These notions are straightforwardly definable in terms of first-
order logic and ≤, so no schemes, set theory, or additional primitives are
required.

To give axioms for complete Boolean algebra, one needs to add an axiom or
scheme that uses a generalized (that is, stated with schemes or auxilliary
entities) notion of supremum (minimal upper bound), whether one takes
as primitive the relation ≤ or the algebraic operations and 0 and 1. In the
complete case, it is more natural to take ≤ as primitive, and, of course, this
facilitates comparison with mereology.

A standard axiom set for complete Boolean algebra, sCBA, breaks into
three groups. The first group says that ≤ is a partial ordering. The sec-
ond group consists of a single axiom (scheme) saying that any φx has a
supremum (mub):

Supremum ∃z Mub(z, φx)

(Recall that standardly, the notion of complete Boolean algebra is defined
within set theory, so the φx’s would be set-variables.) Supremum is obvi-
ously equivalent to the conjunction of MubE and Zero. With anti-symmetry
in place, we get that there is exactly one supremum for any φx. This justi-
fies our introducing defined complex terms

Sup(φx)

(the supremum of φx) for arbitrary φx, to be treated as the definite descrip-
tion “the minimal upper bound for φx”. Next, we may get that for any φx,
there is a greatest lower bound for φx. Let
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In f (φx)

(the infimum of φx), be treated as Sup([y | ∀x(φx → y ≤ x)]).

By definition, ∀y(∀x(φx → y ≤ x) → y ≤ In f (φx)). Also, we have that
∀z(∀y(∀x(φx → y ≤ x) → y ≤ z) → In f (φx) ≤ z). Now every x such that
φx is like z in the antecedent of the main conditional of this last formula;
hence we have ∀x(φx → In f (φx) ≤ x). Thus In f (φx) is indeed a greatest
lower bound on φx.

The third group of axioms is stated in terms of 1 and 0 and the algebraic
operations of meet and join, all defined in terms of ≤. 0 is as above; 1 is
Sup([x | x = x]).

(s + t) abbrev. Sup([x | x = s ∨ x = t])
(s · t) abbrev. In f ([x | x = s ∨ x = t])

The axioms are:

Complement ∀x∃y(x + y = 1 ∧ x · y = 0)

Distributivity ∀x∀y∀z(x + (y · z) = (x + y) · (x + z))

One can derive that the object asserted to exist by Complement is unique,
using some of the important little theorems24 x · y = x ↔ x ≤ y ↔ x +
y = y, (x · y) + x = x, x · (y + x) = x, x = x + 0, x = x · 1, x · y = y · x,
x + y = y + x, x + (y + z) = (x + y) + z, and x · (y · z) = (x · y) · z. If a and
a′ are complements of x, i.e., x + a = 1, x · a = 0, x + a′ = 1, and x · a′ = 0,
then

a · a′ = (a + (x · a′)) · a′ = ((a + x) · (a + a′)) · a′ = (a + a′) · a′ = a′

So a′ ≤ a; similarly, get a ≤ a′ and apply Anti-symmetry. One can derive
the dual distribution principle, namely

∀x∀y∀z(x · (y + z) = (x · y) + (x · z))
without appealing to Complement, by making use of some of the little
theorems; begin by using Distribution to get that (x · y) + (x · z) = ((x ·
y) + x) · ((x · y) + z).

The notion of a (not necessarily complete) Boolean algebra is much weaker
than the notion of a complete Boolean algebra. A standard axiom set, sBA,

24Their use for this purpose is standard, as in [1].
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for the general notion of Boolean algebra, also has axioms falling into three
groups. The first group is again the partial ordering axioms. The second
forms a greatly weakened version of the Supremum axiom: it is only re-
quired that each pair of things have both a supremum and an infimum (cf.
Product and BLUB above). The third group is Distribution (the definitions
of join and meet are the same) and an existentially quantified version of
Complement above, that says that there exist objects (to be called ‘0’ and
‘1’) such that the Complement axiom above is satisfied. (One can then
prove that these objects are unique, that ∀x (0 ≤ x ∧ x ≤ 1), and so on.)

If we do not require completeness (of at least the schematic sort), the close
correlation with classical mereology would fail. Every Boolean algebra
with finitely many objects is complete, but the two notions come apart if
there are infinitely many objects.25

25Consider PSCLM, “pure” schematic CLM, in which ≤ is the only non-logical rela-
tion. There are non-complete Boolean algebras that cannot be converted into models
of PSCLM by simply deleting 0 and restricting ≤ accordingly; for example, there are
Boolean algebras in which the set of atoms has no least upper bound. (An atom of a
Boolean algebra is an element such that only 0 and it are ≤ it; an atom of a mereology is
an element such that only it is part of it.) Since “atom” is easily given a definition in a
first-order language with ≤, the set of atoms is definable in the relevant sense, and so it
is an easy theorem of PSCLM that if there is an atom, then there is a least upper bound
on the atoms.

That there are such Boolean algebras can be seen by the following argument. First,
given that 〈B,≤B〉 is a Boolean algebra, and A ⊆ B: if A is closed under (binary) meet
and (binary) join and complementation, and 1 ∈ A (where 1 is the “top” element of
〈B,≤B〉), 〈A,≤A(= ≤B � A)〉 is a Boolean algebra (where ≤B � A is {〈x, y〉 : x ≤B y
and x, y ∈ A}; moreover the meet, join, and complement operations of the A-algebra are
restrictions of those of the B-algebra (e.g., for x ∈ A, the complement of x in 〈A,≤A〉 is
the complement of x in 〈B,≤B〉).

Now call an element x of a Boolean algebra a “bit of gunk” if x 6= 0 and no atoms are
≤ x. Let 〈B,≤〉 be a Boolean algebra that has infinitely many atoms and also at least one
bit of gunk. Let P be some infinite set of pairwise disjoint bits of gunk of B. (x and y are
disjoint if their meet is 0; there must be such a set if there is at least one bit of gunk in B.)
Let G be {x ∈ B : ∃y ∈ P x ≤ y}. Let T be the set of atoms of B and let A be the closure of
T ∪ G under (binary) join, (binary) meet and complement. Then 〈A,≤ � A〉 is a Boolean
algebra in which the set of atoms has no least upper bound. (To show this, it helps to
put each member of A into a “normal form” analogous to Conjunctive Normal Form in
propositional logic. Since members of A are “generated out of T ∪G by inductive closure
on the three operations,” given the Boolean laws governing these operations, one can
deduce that every member of A can be represented as a finite join of terms, each of which
is a finite meet of terms, each of which (in turn) is a member of T or of G or a complement
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N2F (with Zero) and sBA

We are now in a position to start linking mereology with Boolean algebra.
A weakening of N2 naturally provides an alternate set of axioms equiv-
alent with sBA. We simply add Zero and reduce MubE to its finite coun-
terpart, which effectively asserts a minimal upper bound for any x and
y:

Binary Join ∀x∀y∃z(x ≤ z ∧ y ≤ z ∧ ∀w(x ≤ w ∧ y ≤ w → z ≤ w))

(In the presence of Reflexivity and Transitivity, Binary Join is equivalent
with BLUB above.) Let N2F (N2 Finite) be the conjunction of Anti-Symmetry,
Transitivity, Binary Join, and Strong Complement, and let BA be N2F con-
joined with the axiom Zero. We can derive from BA the standard relational
axioms for Boolean Algebra, sBA.

First, we can derive in BA that there are unique objects that satisfy 0(x)
and 1(x), where these are defined as above, or equivalently, 0(x) ↔ ∀y x ≤
y and 1(x) ↔ ∀y y ≤ x. (Zero yields the 0; apply Strong Complement to it
to yield the 1.) Each is the strong complement of the other (and this holds
even if there is exactly one thing). Thus we have

Exceptionless Strong Complement
∀x∃z(z �� x ∧ ∀y((y �� x → y ≤ z) ∧ (y �� z → y ≤ x)))

and so we may speak of “the strong complement” of x (notated again x∗)
for any x. The Easy Lemmas above go through. Applying anti-symmetry,
binary joins are unique, so we may use ‘x + y’ as a term for the object
asserted to exist by Binary Join. Then it can fairly easily be shown that
(x∗ + y∗)∗ is a meet for x and y. (x∗ ≤ x∗ + y∗, so (x∗ + y∗)∗ ≤ x; similarly
(x∗ + y∗)∗ ≤ y. And if a ≤ x and a ≤ y, then: x∗ ≤ a∗, and y∗ ≤ a∗, so
x∗ + y∗ ≤ a∗, so a ≤ (x∗ + y∗)∗.) Notate the meet of x and y with ‘x · y’.

thereof: i.e., notating the meet, join, and complementation operations of 〈B,≤〉 as ‘·’, ‘+’,
and ‘′’ respectively, each member of A is of the form

( (a1 · . . . · an · b′1 · . . . · b′m · g1 · . . . · gi · h′1 · . . . · h′j) + (. . .) + . . . + (. . .) )
(where n, m, i, j ≥ 0 and each a and each b ∈ T and each g and each h ∈ G). A key
observation is then that for each x that is a complement of a member of T ∪ G, there are
at most finitely many members of T ∪ G that are not ≤ x.)
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The Stong Overlap Lemma (SOL) goes through as above. To derive Com-
plement, we need to show that for any x, x + x∗ = 1 and x · x∗ = 0. The
latter is easy since x �� x∗; to get the former, note that for any a 6= 0, if a �� x,
then a ≤ x∗, so a • x + x∗, while if not, a • x, so again, a • x + x∗. So for
any a with a • 1, a • x + x∗; apply SOL and conclude 1 ≤ x + x∗, hence
1 = x + x∗.

To derive Distributivity, we will show both

(i) x + (y · z) ≤ (x + y) · (x + z) and
(ii) (x + y) · (x + z) ≤ x + (y · z)

The first can be shown to follow basically from the definitions of join and
meet. To derive the second, we derive

(iia) a • [(x + y) · (x + z)] → a • (x + (y · z))
(using • as defined above) and apply SOL.

The key lemmas for deriving (iia) are

(iia)L1 a �� x ∧ a �� y → a �� x + y and
(iia)L2 a �� x ∧ a ≤ x + y → a ≤ y

To show L1, note that the antecedent implies that x ≤ a∗ and similarly for
y, so x + y ≤ a∗; so a ≤ (x + y)∗, so a �� x + y. (The only way b ≤ z and
b ≤ z∗ is if b = 0.) To show L2, assume the antecedent, and that a 6= 0
(otherwise we are done). Now consider any b with b • a: get c 6= 0 with
c ≤ a and c ≤ b. Get that c �� x while c • x + y. Apply (the contrapositive
of) L1 to deduce c • y and infer b • y. So for any b, if b • a, b • y; apply
SOL and conclude a ≤ y.

Now to derive (iia), suppose a • [(x + y) · (x + z)]. Get b 6= 0 with b ≤ a
and b ≤ (x+ y) · (x+ z); get that b ≤ x+ y and b ≤ x+ z. Now, if b • x, then
we have a non-zero c with c ≤ b ≤ a and c ≤ x ≤ x + (y · z). Otherwise
b �� x; apply (iia)L2 twice to get b ≤ y and b ≤ z and thus b ≤ y · z. Thus, in
any case, a • x + (y · z).

To show that sBA yields BA, we need only show that the complements
postulated by Complement are in fact strong complements, in the presence
of the other axioms. Use x̄ to denote the (weak) complement of x, and x∗

for the strong complement; we want ∀x x∗ = x̄. To show this, we need to
show x �� x̄ and ∀y (y �� x → y ≤ x̄) and ∀y (y �� x̄ → y ≤ x). One can easily
show that x �� y ↔ x · y = 0. Hence x �� x̄. Now suppose y �� x. Then y · x = 0,
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and so:

x̄ = x̄ + 0 = x̄ + (y · x) = (x̄ + y) · (x̄ + x) = (x̄ + y) · 1 = x̄ + y

Hence y ≤ x̄. The other needed fact is derived similarly.

Main results of Part Four

Thus BA, which is N2F (the finite version of N2) plus Zero, is equivalent
with sBA. With this shown, it is clear that N2 plus Zero is equivalent with
the “infinite” or complete version of Boolean algebra, sCBA (provided that
the mechanism for generality represented by our φx’s is the same on both
sides). To see their equivalence, we need only the above arguments and
the observation that Zero and MubE together are equivalent with Supre-
mum.

As we noted earlier, in the presence of Zero, we can derive in N2F that
there are unique elements 0 and 1 with the expected properties and that
each is the strong complement of the other. Putting all this together, we
get that we may axiomatize Boolean algebra with the conjunction of Anti-
Symmetry, Transitivity, Binary Join, and Exceptionless Strong Comple-
ment. To get complete Boolean algebra, replace Binary Join with Supre-
mum.

Summing up, N2 is an axiomatic “middle ground” between Classical Mere-
ology and Boolean algebra. We have that CLM is equivalent with N plus
NoZero, which, in turn, is equivalent with N2 plus NoZero. And sCBA
is equivalent with N2 plus Zero, which, in turn, is equivalent with N plus
Zero. This brings out the small difference between Classical Mereology
and complete Boolean algebra. Further, we have seen how the defined
notion of strong complement helps to bring all of these theories together.
In the presence of partial ordering and mubs (finite or not), the effect of
the strong complement axiom is basically the same as the combination of
WeakSup and Filtration, and, again, basically the same as the combination
of Complement and Distributivity.
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Summary of axiom sets

Classical mereology is the core notion of “mereology” in the philosophical
literature. Within a system that yields it, the two main notions of fusion
and the notion of least upper bound are equivalent; but in axiomatizing,
one must be more careful. The stronger, second type of fusion seems to
be the more natural notion, and the notion of minimal upper bound is
perhaps more natural still.

Here are five ways to axiomatize classical mereology. (See Part One above
for the definitions of other terms and the use of φx.)

TYPE-1 FUSION Fu1(t, φx) abbreviates
∀y(y ◦ t ↔ ∃x(φx ∧ y ◦ x))

TYPE-2 FUSION Fu2(t, φx) abbreviates
∀x(φx → x ≤ t) ∧ ∀y(y ≤ t → ∃x(φx ∧ y ◦ x))

MIN UPPER BOUND Mub(t, φx) abbreviates
∀x(φx → x ≤ t) ∧ ∀w(∀x(φx → x ≤ w) → t ≤ w)

One may not replace type-2 fusion with type-1 fusion in any of the axiom
sets.

First way:

Reflexivity ∀x x ≤ x
Anti-symmetry ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
StrongSup ∀z∀y(∀x(x ≤ y → x ◦ z) → y ≤ z)
Fusion1E ∃x φx → ∃z Fu1(z, φx)

Second way:

Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
WeakSup ∀x∀y(x � y → ∃z(z ≤ y ∧ x o z))
Fusion2E ∃x φx → ∃z Fu2(z, φx)

Third way:

Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
WeakSup ∀x∀y(x � y → ∃z(z ≤ y ∧ x o z))
Filtration ∀y∀z((y ≤ z ∧ Mub(z, φx)) → ∃x(φx ∧ y ◦ x))
MubE ∃x φx → ∃z Mub(z, φx)
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Fourth way:

Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
Fusion2UE ∃x φx → ∃!z Fu2(z, φx)

Fifth way:

Anti-symmetry ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
MubE ∃x φx → ∃z Mub(z, φx)
Strong Complement ∀x(∃y y 6≤ x →

∃z(z o x ∧
∀y((y o x → y ≤ z) ∧ (y o z → y ≤ x))))

NoZero ∃x∃y x 6= y → ¬∃x∀y x ≤ y
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