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Note: this is a late draft of this paper. The final publication is in Mereology and
the Sciences: Parts and Wholes in the Contemporary Scientific Context
Claudio Calosi and Pierluigi Graziani, ed.

The main goal of this paper is to sharpen our understanding of what is
at stake between two opposing philosophical views, or orientations, on
certain issues within and related to mereology. On the one hand, there
is a view that reality includes a great deal of natural mereological structure,
which must be discovered (at least partly) by empirical means, and for
which there is no a priori reason to think that it will fit any neat formal pat-
tern. Crudely, we may take this first view to be the view that x is part of y
if and only if y is an organic or natural union which x partakes in. Perhaps
the parthood relation has some neat formal properties like transitivity and
anti-symmetry, perhaps not; investigation is required. Moreover, it is far
from evident than every arbitrary collection of objects constitutes a natu-
ral unity, so there probably are many collections for which there is nothing
that deserves to be called the “mereological sum” of this collection of ob-
jects. Broadly, we should leave it to empirical (natural) science to settle
which natural units there are, and what the overall structure of the part-
hood relation “looks like.”

On the other hand, there is a view that there is an a priori1 science of mere-
ology whose truths reveal a great deal about the overall pattern of part-
whole connections in the universe. Crudely, we may take this view to
be that Classical Mereology (or some similar formal theory) gives the one
true theory of the part-whole relation. Very broadly, while the first view
might be associated with Aristotle, the second might be associated with
more modern figures like Quine and Lewis (though anticipations of it can
be found in Descartes and Hume, and elsewhere in the early modern pe-
riod). As Lewis writes: “I myself take [Classical Mereology] to be perfectly
understood, unproblematic, and certain.”2 Let us call this second type of
view “formalistic.”

Modern proponents of the first type of view—let us call it “naturalistic”—
include van Inwagen (according to [5], there are partless simples and mere-
ological fusions of partless simples that are jointly caught up in a life;

1If we reject a sharp distinction between a priori and not, in favor a graduated distinc-
tion, then we may substitute “very close to as a priori as it gets” for “a priori” here.

2[8] p. 75.
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there is nothing else) and Koslicki (according to [6], whether some ma-
terial things have a fusion turns on whether they realize a structure); Kit
Fine might also be suggested, but is harder to place (see [1], [2], and else-
where).

Imagine now a third party to a dispute between a proponent of a naturalis-
tic view and a proponent of a formalistic view, who wishes to make a kind
of peace between them by arguing that their differences are not ultimately
as great as might at first appear. The general strategy the third party em-
ploys is to try to show that for each of the two disputants, the third party
can find, within the things and structure the disputant believes in, a kind
of “image” of the things and structure the other disputant believes in. It
may be that, after “looking at the world from each other’s point of view”
the disputants find that the differences between them are negligible; or,
perhaps more likely, that the exact nature of the disagreement between
them is made sharper by getting clearer on why the differences, despite
the existence of the “images,” are not negligible.

A simplification: sets as natural kinds

A comparison to a somewhat simpler dispute will help make clear what
I have in mind. Consider a dispute between two philosophers, the first
of whom, in “naturalistic” fashion, holds that some but not all classes of
material objects correspond to natural kinds (e.g., the class of all dogs cor-
responds to a natural kind, but the class of all dogs that are in a country
whose name begins with “E” does not). The naturalistic philosopher be-
lieves in arbitrary classes of things, and in addition, a few kinds of things.
The second, “formalistic,” philosopher is skeptical of the existence of kinds
above and beyond the classes themselves. Now imagine a third party who
gets both philosophers to agree that every class (of material objects) corre-
sponds to one and only one set of objects (perhaps they take a class to itself
be a set, or perhaps they take a class to be a mere plurality and a set to be a
single thing). The third party then proposes that the naturalistic philoso-
pher might see the naturalistic one as simply concerned to deny that there
are any further entities that “collect” material objects, above and beyond
the sets, so that if there are natural kinds, they are just sets. Meanwhile,
the formalistic philosopher might see the naturalistic one as holding that
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among all the many sets of material objects, some are special, and deserve
to be singled out as “natural.”

If the formalistic philosopher agrees that some sets are especially natural,
and the naturalistic one does not think that an ontology of kinds is nec-
essary, in addition to the distinction between natural and unnatural sets,
then it is unclear that the two really disagree on anything that matters.
The situation can be compared to the dispute about universals, between
David Armstrong and David Lewis, as portrayed by Lewis in [7]. Lewis
(in the role corresponding to our formalistic philosopher) at first wants to
deny that there are universals, in addition to arbitrary collections of pos-
sibilia. But he then comes to recognize that the whole system, advocated
by Armstrong, of a sparse ontology of universals,3 together with certain
features of them (their direct relations to laws of nature, to objective simi-
larity, etc.) has great theoretical utility. But instead of adding a superstra-
tum of universals to his arbitrary collections, Lewis proposes that all of the
theoretical work that universals need to do can be done by the collections
together with a crucial distinction between perfectly natural collections and
other collections. One might say that his ontology is formalistic, but his
ideology is naturalistic.

The disagreement between our two philosophers thus might be merely
superficial: they might ultimately agree in ontology (sets alone, no other
ontological type required) and theoretical ideology (there is an extremely
important natural/non-natural distinction among sets). The disagreement
might instead be deep, perhaps because the naturalistic philosopher takes
himself to have good reasons to believe that kinds are not certain special
sets, or perhaps because the formalistic philosopher takes the distinction
between natural and unnatural to be unacceptable, either in general, or in
its application to sets. Or again, perhaps both philosophers agree that sets
do not change their members, and the first philosopher holds that natural
kinds do change their members: e.g., the kind dog loses a member each
time a dog dies. Then there appears to be a good reason to think that the
set is intrinsically, hopelessly, unsuited to play the theoretical role required
of the kind.

For our purposes, it is worth dwelling on this story just a little longer.
While it is not implausible that sets do not change their members, while

3“Sparse,” because not every arbitrary collection corresponds to a universal.
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kinds do, it is also not implausible to think that this is a mere appearance of
difference, resulting from typical ways of talking, rather than the natures
of the things themselves. For it may be agreeable to both philosophers
that a set has its members “eternally,” so that the set of all dogs that ever
exist currently has members that do not presently exist. Set membership,
on this view, doesn’t occur, or relate a member to a set, at one time rather
than another; instead, it happens timelessly. Yet if this is the case there is
still a reasonable notion of a set s losing a member x at a time t: x might
be a member of s such that [x exists over a long span of time up to t, and x
does not exist after t]. Once it is recognized that both (1) set membership
is an eternal affair (so that x ∈ s either once-and-for-all or never); and (2)
nonetheless, there is a reasonable derivative notion of membership-at-a-
time (x ∈t s iff [x ∈ s and x exists at t]) it is less clear that the fact that
we tend to think of the natural kind dog as subject to membership-change
while we tend to think of sets as membership-stable is a good reason to
think that sets and natural kinds are different types of things. For it may
be that when we think of the changeable membership relation on natural
kinds we are really just thinking of the derivative changeable membership
relation on (natural) sets.

The philosophers debating on natural kinds might continue to disagree.
The naturalistic one might say that sets are ineligible to be kinds for an-
other reason: they have the wrong spatial properties. The natural kind
dog might be something that exists on earth, while the set of dogs exists
nowhere or everywhere. But again, there is reason to wonder if this is a
genuine difference rather than an appearance. For we may certainly define
a notion of location for a set at a time that will behave, one might think,
much like the notion of location for a kind does: the set will be located, at
a time, wherever its members that exist at that time are. More precisely,
we will need to say something like: the location of s at t is the union of
the regions occupied at t by the members of s that exist at t. It is worth
noting that part of what makes this particular definition work is that it is
relatively uncontroversial that regions amalgamate in a natural way: for
any collection of regions, there is the union of those regions, basically a
region that you partly occupy if and only if you partly occupy any of the
regions in the collection.

Now, it is possible to insist that such a notion of the “location” of a set
is somehow second-rate (“unnatural” or “fake” or “merely derivative,”
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etc.), while the notion of the “location” of a kind is first-rate, not second-
rate. But it is unclear how such an asymmetric ranking of the two notions
of location can be justified.

Similarly, if the naturalistic philosopher protests that kinds are made of
matter, while sets are not, we might wonder why a well-defined notion
of the material content of a set (if we can find one) is second-rate. Say
that a set is “perfectly materialistic” if it is non-empty and every one of its
members is made of matter. If we may suppose that for any bits of matter,
there is some matter that functions as the “union” of those bits, in much
the way that for any collection of regions of space there is a union of the
regions, then we may say that a perfectly materialistic set is “made of”
exactly the union of the bits of matter that make up its members.

It is not obvious how far such strategies can actually work to remove ap-
parent differences between the set of dogs and the natural kind dog. But
the basic point should now be clear enough: that the dispute between the
two philosophers who seem to disagree about natural kinds might well
turn out to be a shallow or merely verbal dispute, since it may turn out
that each philosopher believes in a system of items and features of those
items, a system that plays the theoretical role that the whole system of
natural kinds is supposed to play.

Sets as things

Now to return to the main theme: the suggestion of this paper is that the
dispute between the “natural unities” mereologist and the “mathemati-
cal pattern” mereologist may turn out to be similarly largely shallow or
verbal. In particular, the suggestion will be that if the naturalistic mereol-
ogist agrees to the existence of arbitrary sets of the material objects he or
she already embraces, while the formalistic mereologist agrees to a crucial
distinction between natural and non-natural objects and sets of objects,
the two may equally regard the whole of reality to consist of a formally
well-behaved pattern of objects and sets of objects (a pattern whose global
properties are what the formalistic mereologist was always emphasizing),
together with an important, formally unpredictable, natural/non-natural
distinction among the nodes in this pattern (which the naturalistic mere-
ologist was always emphasizing).
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To illustrate a little: where the formalistic mereologist takes there to be
a fusion of all objects which are either cats or dogs, the naturalistic one
takes there to be the set of all things that are either cats or dogs. Now,
both agree that the set exists, and we take it that it is negotiable that the
set might inherit a location, and other minimal physical properties, from its
members. But then how different is the set, as seen from the point of view
of the naturalist, from the fusion, as seen from the point of view of the
formalist? By downplaying the differences, we hope to make good on our
suggestion that the mutually acceptable set can play the role of the fusion.
Assuming that this works for this particular object (the fusion), our main
task is to show how to coordinate things so as to make an entire formal-
istic network of objects, and part-whole relations among them, mutually
agreeable. The mutually accepted network will have exactly the formal
character that the formalistic mereologist emphasized; yet the naturalistic
philosopher will still maintain that there is a special natural sub-network
of the larger, formally well-behaved one, with natural objects as nodes,
linked by a natural sub-relation of the larger part-whole relation.

The rest of this paper is concerned with some technical details involved
with fleshing out this suggestion, particularly from the point of view of
the naturalistic mereology. The main project at hand is of this form: as-
suming nothing formally about the most basic, given system of objects D
and primitive “natural” part-whole relation N0 on them, what needs to be
done, using nothing more than set theory together with the given objects
and relation, to construct on and around it a formally “well-behaved” sys-
tem of objects H and defined part-whole relation ≤ on them? We wish
to “preserve” as much structure as possible, with D a subset of H and N0
a sub-relation of ≤, and such that the relation ≤, when restricted to its
sub-domain D, should be identical with, or at least very closely related
to, N0. To make this project more exact, we will take the notion of being
“well-behaved” to be the notion of “obeying the laws of Classical Mereol-
ogy,” so that what we are up to is finding a transformation Ψ, that could
in principle be applied to any relational structure 〈X, R〉, so that

Ψ(〈X, R〉) = 〈X′, R′〉
has exactly the formal structure that Classical Mereology requires; that
is, 〈X′, R′〉 is guaranteed to be a model of Classical Mereology, no matter
what X and R are.
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What makes the project formally non-trivial is that there are basically two
sorts of formal task here, that tend to work against one another, but must
be executed simultaneously. The first task is this: given a “natural” part-
whole relation N0 and its “natural” domain D, extend the relation — that is,
add relational “links” to N0, among things already present in D — in such
a way that the resulting relation is formally well-behaved in the sense of
possessing such features as reflexivity, transitivity, and obeying the strong
supplementation4 constraint of Classical Mereology. The second task is to
add objects to the “natural” domain D (together with relational links) so
as to provide mereological fusions for arbitrary non-empty subsets of this
domain.

We would be on our way to executing the second task, if we were to im-
itate in a straightforward way what we considered saying about natural
kinds above: “let us add to D every non-empty subset of D, and count
members as parts.” Thus we would get a candidate for the mereological
fusion of all dogs: the set of all dogs would now be counted as a material
object, alongside the dogs, and each dog would count as a part of it. Many
objections to so counting the set can be met with, as discussed above. But
this way of executing the second task has made it harder to execute the
first task. For example, our new relation will not be transitive on its do-
main, since a given dog’s foot will not be counted as a part of the fusion
of all dogs. Moreover, we may have “too many things” in some cases,
playing the same formal role: for example, if p is the set of parts (in the
original, given sense of part) of a dog d, then both d and p are suited to
play the formal role of being the mereological fusion of the members of p.

Thus the non-trivial formal difficulty is in executing both tasks simultane-
ously. But it can be done, in a fairly natural way. While the formal device
explored here is, it is hoped, sufficient to give a “proof of concept” for the
more general philosophical idea, it is really only a first step, as there are
a number of questions one might raise about it that we will not have the
space to discuss. A couple will be touched on briefly at the end of the
paper, once the device is in view.

4See below for a formally exact statement of this constraint.
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Overview of the formal device

Here is a brief informal sketch of the technique. We begin with some natu-
ral objects (to be thought of as concrete natural units on the model of the nat-
uralistic mereology) and a given part-whole relation on them; call the set
of these objects the natural domain and the relation the natural part-whole
relation. Then we take the reflexive and transitive closure of the natu-
ral part-whole relation; next we extend the domain by adding non-empty,
non-singleton sets of the members of the natural domain. We then ex-
tend the relation further, reaching a relation on the extended domain that
is logically guaranteed to almost satisfy CM. Almost, because, in a very
clear sense, the only possible failing is that the resulting relation might
not be anti-symmetric. In the final stage, we restrict the domain and re-
lation that resulted from the composite of our previous transformations,
basically choosing (in a principled way) one “representative” from each
cluster of items that contravene anti-symmetry, thus guaranteeing that we
move from almost satisfying CM to actually satisfying it.

An interesting feature of the general transformation is this: if we start with
a domain and relation that satisfies CM, the construction winds up exactly
where it started: the combined effect of our sequence of transformations
will be nothing at all. CM is, structurally, a “fixed-point” of the construc-
tion.

Formalization

We turn to the technical details of the transformation; the discussion as-
sumes only an elementary acquaintance with logic and set theory, and
should be accessible to anyone interested in the formal details of Classi-
cal (and other) mereologies.

We will be discussing various transformations on relational structures, that
is, ordered pairs 〈X, R〉, where X is a set and R is a relation on that set (the
carrier set). Relations are simply sets of ordered pairs, and what it means
that R is a relation on X is just that for every ordered pair 〈x, y〉 in the
relation, x ∈ X and y ∈ X, or, to put it another way, R ⊆ X × X. We will
often write ‘x R y’ for ‘〈x, y〉 ∈ R’; we will also say ‘x bears R to y’ for this.
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Another notion we will want is the notion of the restriction of a relation
to a given set: if R is a relation and Y is a set, then R � Y is the relation
{〈x, y〉 : x R y and x, y ∈ Y}.
We will focus on “part-like” relations and structures, and a particular se-
quence of transformations on them. But the transformations we consider
can be defined in a general way, independent of their application here; we
will consider the general definitions as well as the application.

The first transformation, Φr, is simply to take the reflexive closure of a
relation (on the carrier set):

Φr(〈X, R〉) = 〈X, R∪ {〈x, x〉 : x ∈ X}〉.
Clearly, if R is itself reflexive, then Φr(〈X, R〉) = 〈X, R〉. So Φr is self-fixing:
for any relational structure B, Φr(Φr(B)) = Φr(B).

The next transformation, Φt, takes the transitive closure of the given rela-
tion. Given 〈X, R〉, say that S transitively extends R within X if S ⊆ X × X,
R ⊆ S, and S is transitive. Rt is then

⋂{S : S transitively extends R within
X}, and we define Φt so that

Φt(〈X, R〉) = 〈X, Rt〉.
The transitive closure of a relation is itself transitive, since the intersection
of a set of transitive relations is itself transitive. If R is itself transitive,
then Φt(〈X, R〉) = 〈X, R〉. So Φt is also self-fixing. Further, Φt(Φr(B)) =
Φr(Φt(B)). 5

To begin our discussion of the application, let D be the set of natural ob-
jects. (We assume that they form a set.) We may allow that there are many
specific part-whole relations on D; let us define

x N0 y

so that for x, y ∈ D, x N0 y just in case x bears one of these relations to y.

5 One can get an especially clear view of the effect of Φt by considering how it can be
built up from iterated application of a simpler transformation. Define Φt0 so that

Φt0(〈X, R〉) = 〈X, R∪ {〈x, z〉(∈ X× X) : ∃y (x R y ∧ y R z)}〉.
Φt0(B) is a first approximation of Φt(B); a second approximation is Φt0(Φt0(B)). One
can show that Φt(B) is the “limit” of the approximations. More precisely: let B0 be
B = 〈X, R〉 and let Bi+1 be Φt0(B

i). Let Ri be the relation in Bi. Then Rt, the relation of
Φt(B), is the relation

{〈x, y〉(∈ X× X) : ∃i ∈N 〈x, y〉 ∈ Ri}.
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N0 is the resulting generalized natural part-whole relation.

Formally, we make no assumptions whatever about N0: 〈D, N0〉 is an ar-
bitrary non-empty relational structure (a non-empty set with a relation on
it). Informally, we will use natural examples like John’s foot being part of
John.

Now let 〈D, N〉 be Φr(Φt(〈D, N0〉)), so that N is the relation that arises
from taking the transitive closure of N0 and adding reflexivity.

Our next general transformation Φ1 is somewhat complicated. Say that a
set is suitable if it has two or more members. Given 〈X, R〉, let A be the set
of all suitable subsets of X, and let B = X ∪ A . Let S be the relation on B
that holds of x and y just in case

xRy, or x ∈ y, or x ⊆ y.

Then let Φ1(〈X, R〉) = 〈B, S〉. Clearly Φ1 is not self-fixing; in fact, almost
the opposite: provided the carrier set X itself is suitable, Φ1(〈X, R〉) 6=
〈X, R〉.
Let 〈E, P0〉 be Φ1(〈D, N〉), i.e., Φ1(Φr(Φt(〈D, N0〉))). Then we can show
that x P0 y if and only if one of the following holds:

x N y, or x ∈ y, or x ⊆ y.

Each of the three disjuncts excludes the other two.

Let E◦ be the set of suitable subsets of D, so that E = D ∪ E◦ and D ∩ E◦ =
∅. Let 〈E, P〉 be Φt(〈E, Po)〉. Then one can confirm that x P y just in case
either:

x P0 y or
x ∈ D and y ∈ E◦, and there is some b ∈ y such that x P b.

To show this, consider what was added when we applied Φt to 〈E, P0〉
(show the easy Lemmas 1 and 2 below first). This shows that to define P,
we could have used these clauses instead of Φt, in our particular applica-
tion. Also, instead of applying Φr and Φt to get N from N0 first, we could
have applied Φ1 directly to 〈D, N0〉 and then applied Φr and Φt (or the
above clauses); the result would be the same.

Let us observe some more features of P. First, some informal examples: let
foot be John’s foot and hand be John’s hand. Then

foot P John
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John P { John, the Eiffel Tower }
(and hence) foot P { John, the Eiffel Tower }.

But

it is not the case that { hand, foot } P John.

Second, some structural features. P has a “top” element, namely D: every
member of E bears P to D. So everything in the wider domain is “part
of” the set of all objects (the narrow domain). Clearly, P is reflexive and
transitive (on E). A very important feature we will use later is this: if some
b ∈ D bears P to some i ∈ E◦, then b bears P to some c ∈ i (in fact, b N c).
That is,

Lemma 1 (b ∈ D ∧ i ∈ E◦)→ (b P i→ ∃c ∈ D(c ∈ i ∧ b P c)).

Also note

Lemma 2 (i ∈ E◦ ∧ j ∈ E◦)→ (i P j↔ i ⊆ j)
and (i ∈ E◦ ∧ b ∈ D)→ ¬ i P b.

P is in the direction of the Classical Mereologist’s part-whole relation: the
set of some objects from D is playing something like the role of the mereo-
logical fusion of its members, since every part (in the sense of N0) of every
member bears P to the set. But this approximation, to the “fusion” of a
set of things that happen to be parts of something x, may not bear P to x,
so we are not there yet. For example, if x is the set of John’s parts, x ∈ E◦

(assuming John has more than one part) and it is not the case that x P John.

Minimal upper bounds and complements

The next transformation takes us much closer. Given any structure 〈X, R〉,
define the relation ◦R (R-overlap) on X as:

(∀ x, y ∈ X) (x ◦R y ↔ ∃z(z R x ∧ z R y)).

Then define S as: x S y iff ∀z (z ◦R x → z ◦R y). Finally, define Φo so that

Φo(〈X, R〉) = 〈X, S〉.
Let 〈E,v〉 be Φo(〈E, P〉) i.e., Φo(Φt(Φ1(Φr(Φt(〈D, N0〉))))). Let us notate
the relation of P-overlap as O. Consider again { hand, foot }; temporarily
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call it i. Given x ∈ E, if x O i, then there is a w ∈ E that bears P to x and to
i. We argue now that there is a b ∈ D such that b bears P to w and either to
hand or to foot. If w ∈ D then let b = w (see Lemma 1). If w ∈ E◦, w ⊆ i, so
w = i (since i is a doubleton), and let b= hand. But b then bears P to John;
and b bears P to x (since b P w and w P x); thus, x P-overlaps John. This
all shows that

{ hand, foot } v John.

Let us now consider the structural features of v. It is easy to see from its
definition (without even knowing what O means) that v is reflexive and
transitive. We also have

Lemma 3 If Φo(〈X, R〉) = 〈X, S〉, then, provided that R is transitive, (∀x, y ∈
X) (x R y → x S y).

In particular, (∀x, y ∈ E) (x P y → x v y).

We now are much closer to the behavior of fusions, since we have

{ x : x P John } v John.

To show how close we are will require some work. First, we will define a
sum-like notion. Given a non-empty X ⊆ E, let

σ′(X) = {b ∈ D : (∃y ∈ X) b P y}.
σ′(X) is obviously non-empty. It is a singleton if and only if X is a sin-
gleton of a P-atom (a member of D that nothing else bears P to); and then
σ′(X) = X. In this case, σ′(X) 6∈ E; otherwise σ′(X) ∈ E. Accordingly, let

σ(X) = σ′(X) if σ′(X) ∈ E; otherwise, let σ(X) be the one
member of σ′(X).

We will prove that σ(X) is a minimal upper bound on X: every member
of X bears v to it, and it bears v to any such thing.

Lemma 4 (∀x, y ∈ E) (x O y→ (∃b ∈ D) (b P x ∧ b P y))

Lemma 5 (∀b ∈ D)(∀i ∈ E◦) (b O i→ (∃c ∈ i) b O c)

Both of these Lemmas are easy to confirm from Lemmas 1 and 2.

Lemma 6 (∀X ⊆ E) : X 6= ∅ → (∀x ∈ X) x v σ(X)
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Proof: Let x ∈ X. Then, if y O x, by Lemma 4, we have a b ∈ D with b P x
and b P y. By the definition of σ(X), b ∈ σ(X) (i.e., either b = σ(X) or
b ∈ σ(X)); so b P σ(X). So y O σ(X).

Lemma 7 (∀y ∈ E)( ((∀x ∈ X) x v y) → σ(X) v y)

Proof: Suppose (∀x ∈ X) x v y. Suppose w O σ(X). Then, by Lemma
4, we have a b ∈ D such that b P w and b P σ(X). By Lemma 1, there
must be a c ∈ D with c ∈ σ(X) such that b P c. Since c ∈ σ(X), for some
x′ ∈ X c P x′; by Lemma 3 and our original supposition, c v y. w O c,
hence w O y, and we are done.

Lemmas 6 and 7 together say that σ(X) is a minimal upper bound for X,
with respect to the v relation. Formally, define: y is a v-minimal upper
bound on X if and only if

(∀x ∈ X) x v y ∧ ∀z( ((∀x ∈ X) x v z) → y v z).

We have now shown

Theorem 1 For every non-empty X ⊆ E, X has a v-minimal upper bound.

σ(X) plays this role, so σ(X) is an approximation of the fusion of X.

Complements

The v relation on E has even more in common with the classical mereolo-
gist’s part-whole relation, since it includes what we may call complements.
Roughly, for almost any object in E, there is a another object that represents
“everything else” in E: the complement is “disjoint” from the original, but
everything “overlaps” one or the other. The only objects without comple-
ments are objects of which everything is already a “part.”

Define the v-overlap relation (symbolized with �) as

x � y ↔ ∃z (z v x ∧ z v y)

Lemma 8 (∀x, y ∈ E) (x � y ↔ x O y)

Proof: The right-to-left direction is straightforward from Lemma 3. For
the left-to-right direction, we give a visual proof. Straight lines represent
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holdings of the P relation from lower to higher, and squiggly lines repre-
sent holdings of the v relation from lower to higher.

• •

•

y x

•

z

a

•
a has to exist, since z O z and z v y; but then a O x as well.

In view of Lemma 8, we can interchange � and O as we please.

Lemma 9 (∀x, y ∈ E)( (∀z ∈ E)(z v x → z � y)→ x v y)

Proof: Suppose the antecedent and that w O x, and let z P w and z P x. By
Lemma 3 and the antecedent, z � y. By Lemma 8, z O y, so w O y.

We will also want the notions of P-disjointness and v-disjointness, where
each is non-overlap of the relevant sort. Given Lemma 8 these relations
are interchangeable. For notation, set

x o y ↔ ¬ x O y (or equivalently)
x o y ↔ ¬ x � y

Now we find, for almost any member of E, an object that will play the role
of its complement. Given x ∈ E, if there is a y ∈ E with y 6v x, then define

x? = σ{y ∈ E : y o x}
We can use Lemma 9 to show that {y ∈ E : y o x} is non-empty: so x?

exists.

Lemma 10 x o x?

Proof: Suppose for reductio x O x?. Then either x? ∈ D (in which case
{y ∈ E : y o x} was {x?} and it is clear from the definition that x? o x) or
get a b ∈ D with b P x and b P x?; since b P x?, get (by Lemma 1) a c ∈ x?

with b P c. Using the def. of x?, confirm that c o x. But b P c and b P x, so
c O x; contradiction.
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Lemma 11 y o x → y v x?

Proof: Suppose y o x and w O y. Get (by Lemma 4) b ∈ D with b P w and
b P y . Now if b O x then y O x; we supposed not, so b o x. So b ∈ x?. So
b P x?, so w O x?.

Lemma 12 y o x? → y v x

Proof: Suppose y o x? and w O y. Get b ∈ D with b P w and b P y. Get that
b o x?, so b 6∈ x?, so it is not the case that b o x, so b O x, and hence w O x.

Putting the last three lemmas together, we have that everything that is not
all-inclusive has a “v-complement” where we define: y is a v-complement
of x if and only if

y o x and
∀z( (z o x → z v y) and (z o y→ z v x) )

Theorem 2 For all x ∈ E, if ∃y(y 6v x) then x has a v-complement.

For all, except the all-inclusive x ∈ E, x has at least one complement, and
x? is one.

Anti-symmetry

The relation v on E is formally very much like the Classical Mereologist’s
part-whole relation. For we have shown that v and E are a relation R on
a set X such that

(2) R is transitive.
(3) All non-empty subsets of X have an R-minimal upper bound.
(4) For any member of X, if not everything bears R to it, then
it has a complement.

If a relation R on a domain X satisfies (2)-(4), then the structure 〈X, R〉
satisfies the axioms of Classical Mereology, provided it has two further
features: (1) R is anti-symmetric; and (5) either there is only one member
of X or there is no member of X that bears R to every member of X.6

6See section 4 of [4]; the five conditions here correspond to the five axioms in the last
of the five axiom-sets given there.
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The members of E fall into “clusters” of things that bear v to one another.
These are like the equivalence classes of an equivalence relation, except
that members of different clusters may (anti-symmetrically) bear v to one
another. If a member of a cluster k bears v to a member of some other
cluster l, then every member of k bears v to every member of l, and no
member of l bears v to any member of k. There is a simple way to trans-
form the structure 〈E,v〉 into a Classical Mereology. We simply treat each
“cluster” of things that bear v to each other as a single element, and let
the clusters inherit the other aspects of the v relation. Formally, for each
x ∈ E, define

[x] = {y ∈ E : x v y ∧ y v x}
Let F be {y : ∃x ∈ E y = [x]}. For [x], [y] ∈ F, with x, y ∈ E, define

[x] ≤F [y] if and only if ∃z ∈ [x] ∃w ∈ [y] z v w.

We can think of this as an instance of a general transformation Φa taking
us from 〈E,v〉 to 〈F,≤F〉; the definition is confined to a footnote.7

Lemma 13 ≤F on F is reflexive, anti-symmetric, and transitive.

Suppose X ⊆ F is non-empty. Let z be {c ∈ E : [c] ∈ X}. Theorem 1 tells
us that z has at least one v-minimal upper bound d. Let

∨
X be [d].

Lemma 14
∨

X is a least upper bound for X (in F).

That is, for every x ∈ X, x ≤F ∨
X, and, for any y ∈ F, if every x ∈ X ≤F y,

then
∨

X ≤F y. This is straightforward to show. (We call this a “least”
upper bound since, because of anti-symmetry, it is unique.)

Lemma 15 If F has more than one element, then there is no x ∈ F such that
∀y ∈ F, x ≤F y.

7Given any structure 〈X, R〉, let A = P(X). Given any x ∈ X, let [x] = {y ∈ X : x R
y ∧ y R x}. Let B be {e ∈ A : ∃x ∈ X ∧ e = [x]}. Let S be the relation on B defined as
follows: for any e and f in B,

e S f if and only if (∃z ∈ e)(∃w ∈ f ) z R w.
Then define Φa(〈X, R〉) = 〈B, S〉. In general, this transformation is much more natural
when combined with prior application of Φr and Φt; the composite Φa ◦ Φr ◦ Φt trans-
forms any relational structure into a partial ordering.
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Proof: It is clear that ∀x ∈ E, x ≤ σ(E), and so [x] ≤F [σ(E)]. Now
consider any [x] ∈ F such that [σ(E)] 6≤F [x]. Apply Theorem 2 and get x?

with x? o x; hence x 6v x?. Thus [x] 6≤F [x?].

Finally, suppose that for a given x ∈ F, there is a y ∈ F with y 6≤F x.
Then there is a≤F-complement for x (uniquely so, because of transitivity).
Define x, y ∈ F are ≤F-disjoint (symbolized oF) as

x oF y if and only if ¬∃z ∈ F(z ≤F x ∧ z ≤F y)

For x, y ∈ F, define x is a complement of y as

x oF y and
∀z ∈ F( (z oF x → z ≤F y) and (z oF y→ z ≤F x) )

Lemma 16 For every x ∈ F, if ∃y(y 6≤F x), then x has a ≤F-complement.

Proof: Suppose we have an x as in the antecedent. Then pick some a ∈ x
and consider [a?].

By the last four Lemmas, we have

Theorem 3 〈F,≤F〉 is a Classical Mereology.

Now, we can “project” the structure of ≤F into E by mapping each f ∈ F
to some representative member of it. The set of representatives would be
a subset of E, and the restriction of v to this subset would be isomorphic
to ≤F.

There are at least two fairly natural ways to choose representatives. The
first is this: for each [x] ∈ F, we pick σ([x]). To see that this works, we
need to show

Lemma 17 (∀x ∈ E) σ([x]) ∈ [x]

Proof: Suppose y ∈ [x]. Then, by Lemma 6, y v σ([x]). And for all z ∈ [x],
z v y. Hence, by Lemma 7, σ([x]) v y.

So now let G be {x : x = σ( f ) for some f ∈ F}. Then G ⊆ E, and we let
≤G be v� G. Then 〈G,≤G〉 is isomorphic to 〈F,≤F〉: σ is a one-one map
from F onto G, and f ≤F g iff σ( f ) ≤G σ(g).
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The second, preferred, way to choose representatives that we will consider
is to choose the “smallest” representative, if there is one; otherwise choose
the “largest,” namely σ([x]). For each x ∈ E: if x ∩ D = {b} for some b,
then let ρ([x]) = b; otherwise, let ρ([x]) = σ([x]). Let H be {x : x = ρ( f )
for some f ∈ F}. Then H ⊆ E, and we let ≤ be v� H. Clearly, 〈H,≤〉 is
also isomorphic to 〈F,≤F〉. So we have:

Theorem 4 〈G,≤G〉 and 〈H,≤〉 are Classical Mereologies, and each is isomor-
phic to 〈F,≤F〉.

We may think of the composite of the operations of going “up” from 〈E,v〉
to 〈F,≤F〉 and “down” to 〈H,≤〉 as a single operation that is applied to
〈E,v〉 to yield 〈H,≤〉; this is more natural for our application, but harder
to define in general. It can be done, however, yielding the generally de-
fined transformation Φρ.8

Overview of the construction

The construction of 〈H,≤〉 from 〈D, N0〉 proceeded by five steps.

Given
〈D, N0〉

take a reflexive and transitive closure:

Φr(Φt(〈D, N0〉)) = 〈D, N〉

add suitable sets of given objects, along with part-like relations (∈, ⊆) be-
tween them and the given objects and on them:

Φ1(〈D, N〉) = 〈E, P0〉
8For a fully general definition, we need some way to tell apart the members of a cluster

that are of lower rank from the others; in our application, these were members of D rather
than of E◦. Assuming that our set theory provides a natural way to rank everything in the
universe (as does Zermelo-Fraenkel set theory with ur-elements, choice, and foundation)
a general transformation Φρ on arbitrary 〈X, R〉 may be defined by first applying Φt,
then, taking a cluster to be a maximal set of members of X that bear Rt to one another,
for each cluster, choosing its single lowest ranked member, if there is one, and the union
of all its lowest-ranked sets, otherwise. Φρ is then defined by taking the “chosen” items
as carrier set and taking the “inherited” relation.
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take a transitive closure:

Φt(〈E, P0〉) = 〈E, P〉

take the overlap-implication:

Φo(〈E, P〉) = 〈E,v〉

and then choose “leasts or sums” as representatives:

Φρ(〈E,v〉) = 〈H,≤〉.

Each of these steps preserves important aspects of the structures involved,
and there are a couple of senses in which the structure of Classical Mere-
ology is a natural “fixed-point” for this sequence of transformations.

From Classical Mereology to itself

Suppose that 〈D, N0〉 is itself a Complete Classical Mereology (CCM).9

Then F is related back to 〈D, N0〉 as follows. For any [x], [y] ∈ F, with
x, y ∈ E, if x, y ∈ D, then [x] ≤F [y] iff x N0 y; if x, y ∈ E◦, then there is a
unique b ∈ D with b ∈ x, and a unique c ∈ D with c ∈ y, and ([x] ≤F [y] iff
b N0 c)—in fact, for each other z ∈ [x], b is the N0-fusion of the members of
z, and similarly for c. The map that takes us from [x] to its representative
in D (x or b) as in the last sentence is our ρ. In fact, we have

Theorem 5 (Variation 1) If 〈D, N0〉 is a CCM, then 〈F,≤F〉 is isomorphic to it.
More precisely: let the transformation Ψ1 be

Φa ◦Φo ◦Φt ◦Φ1 ◦Φt ◦Φr.

Then if B is a CCM, Ψ1(B) is isomorphic with B.
(Variation 2): If 〈D, N0〉 is a CCM, then 〈H,≤〉 is identical with it. More pre-
cisely: let Ψ2 be

Φρ ◦Φo ◦Φt ◦Φ1 ◦Φt ◦Φr.

9A structure is a Complete Classical Mereology if it satisfies any standard set of axioms
for Classical Mereology with the fusion axiom given set-theoretically. That is, the fusion
axiom is a single axiom given with the use of set-theory, rather than an axiom scheme;
see section 1.2 of [4].
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Then if B is a CCM, Ψ2(B) = B.

To prove this, the main key is Lemma 20 below. Before turning to the
proof, observe that, given the above analysis, for each b ∈ D: if b is a
Mereological atom in 〈D, N0〉 (i.e., there is no c ∈ D with c 6= b and c N0 b)
then [b] = {b} and σ([b]) = ρ([b]) = b. Otherwise, ρ([b]) = b and σ([b]) is
the set of b’s N0 parts.

Now, of the transformations that we used along the way, three of them
involve changing the relation only, and do not alter the carrying set: taking
the reflexive or transitive closure (Φt and Φr), and taking the “overlap
inclusion” (Φo). These transformations do not alter any structure that is a
CCM. This is obvious for Φr and Φt, since a CCM is already reflexive and
transitive. For Φo we may use the following Lemma. (The object-language
version of this Lemma is called the “strong supplementation” theorem (or,
as it may be, axiom) in Classical Mereology).

Lemma 18 If 〈X, R〉 is a CCM, then (∀x, y ∈ X), if (∀z ∈ X)(z R x →
z ◦R y) then x R y.

We now prove Theorem 5. Let 〈D, N0〉 be a CCM, and let 〈E,v〉 arise from
it as described above, by applying Φo ◦Φt ◦Φ1 ◦Φt ◦Φr .

Lemma 19 (∀ b, c ∈ D) (b v c↔ b P c↔ b N0 c).

Proof: Clearly, P � D is just N0, so we need only show that the step from P
to v does not add anything: v � D is the same relation. We get this from
Lemma 18.

Last, we need a lemma telling us that for each i ∈ E◦, that there is a unique
“small representative” b ∈ D; b is the N0-fusion of i. It is a theorem of
CCM that if for each non-empty subset i of the domain, there is a unique
fusion of it in this sense: a thing f (i) such that for all y, y overlaps f (i) if
and only if it overlaps a member of i. Given i in E◦, let f (i) ∈ D be its
〈D, N0〉-fusion.

Lemma 20 (∀i ∈ E◦) (∀b ∈ D) ( (b v i ∧ i v b)↔ b = f (i) )

Proof: That f (i) v i is clear from the fusion properties of f (i); that i v f (i)
is clear from those properties and Lemmas 1 and 4. Uniqueness follows
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basically from those properties with Lemmas 5, 18, and 19, and the anti-
symmetry of N0.

This suffices to show Theorem 5.

Final reflections

We also note a couple results that help to show under what conditions
our constructions “leave intact” the structure of N0. Consider the “Strong
Supplementation” axiom of Classical Mereology as applied to N:

(∀x, y ∈ D)((∀b ∈ D)(b N x → b ◦N y)→ x N y)

One result is that this holds if and only if N=v� D. A further easy result
is that N is anti-symmetric iff P is. Moreover, N is anti-symmetric iff there
are no “proper cycles” (in D) under N0, where a proper cycle is a finite
sequence a1, . . . , an with n > 2, with a1 = an, and for each i ≤ n, ai 6= ai+1
and ai N0 ai+1.

Further, if 〈D, N0〉 is structurally “well-behaved” in that it features no
proper cycles and the resulting 〈D, N〉 obeys Strong Supplementation, then
N=≤� D, since for no x ∈ D will there be a y ∈ D such that [x] =
[y]. Thus, if the naturalistic philosopher’s original part-whole structure is
“well-behaved” in this sense, our composite transformation Ψ2 does fairly
little, if any, “damage” to the relation N0 over its original domain: the re-
striction of ≤ to that domain is just the transitive and reflexive closure of
N0.

So if the original part-whole structure is so “well-behaved” that its rela-
tion N0 is also already reflexive and transitive (hence identical to N), then
the restriction of ≤ to the original domain D is identical with the origi-
nal relation N0: Ψ2 has then done nothing but “filled in the gaps,” with
objects and relational links, so as to provide mereological fusions for ar-
bitrary subsets of the domain, without adding to, or subtracting from, the
original links, on the original objects.

Even if the original N0 is not already reflexive and transitive, it may be that
N0 can be recovered from N in an interesting way. For example, if N0 is
irreflexive, but transitive, then N0 is just N but with all self-links removed.
And even if N0 is not transitive, it might still be formally “well-behaved”
in this sense: for all x, y ∈ D, x N0 y iff (x N y and there is no z ∈ D such
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that x N z and z N y); i.e., a part in the most basic sense is an immediate
part in the transitive closure of the most basic sense. It is natural to think
that this condition might hold in the non-classical mereological systems
considered by Koslicki in [6] and in Fine [1]. The system(s) considered
in Fine [2], or some important sub-class of them, might also satisfy this
condition; the notion of component in [2] might be taken as a candidate for
our N0.

These remarks should give a taste for the sort of refinements of the results
we might reach by further exploration of the kind of technique explored in
this paper. A broad statement of the general idea is that if the naturalistic
mereologist’s part-whole relation on its given domain obeys some appar-
ently very weak formal constraints, it will be possible to define out of it,
assuming constructions with set theory, a closely related structure which
obeys much more stringent formal constraints that might be favored by
the formalistic philosopher, such as those of Classical Mereology, in such
a way that the original structure can be recovered as a sub-structure. In
this way, the naturalistic mereologist might make peace with the formal-
istic one, provided the formalistic one is prepared to grant a special status
(e.g., being natural, or carving at the joints, to use a metaphor favored by
Sider in [9]) belonging uniquely to that particular sub-structure—to its ob-
jects and part-whole relation. Or, put another way, their original dispute
might turn out to be merely verbal, the two simply using the words “part”
and “object” in different, but ultimately mutually recognizable, ways.

Coda: quick response to some concerns about sets

As we discussed briefly above, the project will only succeed if sets, or
some replacement for sets, are granted the sorts of properties the formal-
istic philosopher ascribes to typical objects, e.g., being located. There are
three points about this feature of our project that we may briefly address
in closing.

First, it might be thought that if we grant sets location, then we will have a
great many co-located sets, e.g., the set d whose members are all the dogs
(and nothing else), the set {d}, the set {d, {d}}, and so forth. If d inher-
its location from its members, why shouldn’t these other sets? Call two
sets “materially equivalent” if the transitive closure of the one’s member-
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ship is identical with the transitive closure of the other’s. The reply to
this concern would begin by suggesting that if two distinct sets are ma-
terially equivalent, then they are qualitatively indiscernible: they have the
same basic physical properties. The next step would be to argue that it is
acceptable for many purposes to pretend that qualitatively indiscernible
sets are identical. The expectation would then be that the output of our Ψ2
transformation captures exactly the right level of distinction among sets:
two sets that are materially equivalent with the same element of the out-
put of Ψ2 are not, for many purposes, different; and every set is materially
equivalent with a unique set-or-object in the output of Ψ2.

Second, as an alternative to arguing for treating materially equivalent sets
as the same (in some contexts), we could find a replacement for sets through-
out the entire construction of Ψ2. Interestingly, we could use plural quan-
tification over the originally given domain, so that, for example, the role
played by a doubleton {x, y} ∈ E◦ (with x, y ∈ D and x 6= y) would now
be played by those things such that: x is one of them, y is one of them,
and nothing else is one of them. Arguably, there should be even less resis-
tance to treating pluralities as having properties like location, and there is
no problem about there being “too many of them” constructible out of the
basic, given, objects.

Third, there is a concern that, given that sets do not change their members
over time, they remain unsuited to play the roles of objects. There is much
to say about this concern, and here we can only note that it seems worth ex-
ploring the possibility that considerations about time will only complicate
the story, but not fundamentally change it. For example, if it can be agreed
by both the naturalistic and formalistic philosopher that parthood may ad-
equately be treated as a three-placed relation, so that we say “x is part of
y at time t” instead of the bare “x is part of y,” then we should consider
how all of our formalization might be re-cast accordingly. Or perhaps we
may take objects to have temporal parts, or, more non-traditionally, take
(some) sets to change their members.10

10See [3] for a discussion of the interaction of formalistic mereology with time and
tense. The main idea pursued in [3] is to re-conceive formalistic mereology while taking
tense (or metaphysical modality) seriously, and allowing objects (including fusions) to
change their parts. To wed, in a natural way, the approach in [3] with the idea in this
paper would seem to require a set theory in which sets can change their members. Such
a set theory should be buildable by modifying untensed set theory in something like the
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manner that [3] modifies untensed Classical Mereology to yield a tensed mereology.
Here is the barest sketch of how this would go. Naı̈ve Set Theory consists of the axiom

of Extensionality (sets x and y are the same iff x and y have the same members) together
with the Naı̈ve Comprehension scheme for set existence. The scheme is this (for any
predicate φ(x) in which x occurs free and y does not, an instance of the scheme is): there
exists at least one set y such that: for all x, x ∈ y iff φ(x). Let Tensed Naı̈ve Set Theory be
Tensed Extensionality (sets x and y are the same iff it is always the case that x and y have
the same members) together with a tensed correlate of Comprehension: there exists at
least one set y such that it is always the case that for all x (x ∈ y iff φ(x)). An instance of
this scheme thus implies that there is a set y such that at every time, for every x, x ∈ y at
that time iff x is (at that time) a dog. This set would have no members when there are no
dogs, and its membership would wax and wane with the existence of dogs. Of course the
tensed scheme inherits the inconsistency of the Naı̈ve Comprehension scheme; to find a
reasonable, consistent tensed set theory, one would modify ZFC with ur-elements, or the
like.
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