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Abstract
In this paper, we provide evidence to support the use of a specific sampling algorithm for drawing random
samples of local election officials (LEOs) in the United States, using the sampling package in the R statistical
software. The paper is part of a larger project that examines the backgrounds, professional orientations, and
opinions of LEOs in order to better characterize their role as “stewards of democracy.” The enormous diversity
of local jurisdictions and the hyperfederalized institutional structure of American elections combine to create
methodological challenges to drawing a random sample that allows generalizations both about LEOs and also
about the American voting experience. The paper explores the statistical foundations of a number of unequal
inclusion probability sampling methods implemented in the sampling package. We show using simulations
that the extremely skewed distribution of jurisdictions (by population size) causes anomalies in the sampling
method, resulting in overly variant samples and extreme values for some of the sampling weights when using
the minimal support sampling algorithn. We further show that the “random systematic” sampling method is
superior, resulting in lower variance estimates, and is just as easy to implement as “minimal support”.
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Introduction

Local election officials (LEOs) in the United States have been described as the “stewards of democracy”
(Adona et al. 2019), the street-level administrators who play a central role in connecting American citizens to
elections and to their democracy. In 2018 and 2019, the Early Voting Information Center at Reed College, in
partnership with the Elections Program at the Democracy Fund, conducted two nationwide surveys of local
election officials to ask them about election administration, access, integrity, and reform (“Survey of Local
Election Officials” 2019). The broad goal of the DF/RC LEO Survey was to elevate and amplify the voices of
local election officials in discussions and debates over election integrity and election reform. These “street
level administrators” of American elections play a critical role in assuring a free, fair, and secure elections
system, and their viewpoints and opinions about election administration deserve to be heard.

We also entered this project with scholarly interests in the LEO as a bureaucratic and political position
in local government. There are local election officials in every United States county, in every parish in Lousiana,
and in every township and municipality in Connecticut, Maine, Massachusetts, Michigan, Minnesota, New
Hampshire, Rhode Island, Vermont, and Wisconsin. We want to learn about who takes on the role of an
LEO, what their professional environment is like, and how they embrace their role in protecting the integrity
of American elections and improving trust and confidence in our democratic system. Finally, we care about
way to improve the voter experience in the United States. Consequently, we pay attention to how laws,
administrative procedures, and decisions made by LEOs influence voter information and attitudes about
election integrity, the accuracy of the vote count, and the resilience of our system in the face of domestic and
foreign security threats.

Simultaneously considering the local official and the local voter creates two important decision points
that impact sampling and substantive interpretation of the results. This paper focuses on the mathematical
and statistical sampling implications of these decisions and provides recommendations for future research.

The first decision point is linked to federalism and to definitions about the meaning of “election
jurisdiction” and “local election official.” In pratical terms, this boils down to a decision about how to treat
Minnesota. Some research projects collect Minnesota information at the county level while others collect
information at the municipal and township level. This decision is an easy one to make, but still consequential,
because it changes the size of the sample universe by 25%. We briefly discuss the meaning of the term “local
election official” and how it provides guidance to the choice of how to treat Minnesota.

The second decision point is more difficult to adjudicate. While also a product of federalism, it is
more far-reaching than deciding how to handle a single state. The highly diverse and decentralized American
elections system has been described as “hyperfederalized” (Ewald 2009) and a “complex quilt” (Gronke 2014).
The hyperfederalized nature of American elections makes it difficult to generalize about a single American
election ecosystem, draw a profile of a typical local election official, or make assertions about a common
voter experience. Some aspects of election administration are governed by the Constitution and by federal
statutes, but the administrative details for federal, state, and local elections are largely determined by fifty
separate state governments, even though local officials may have substantial administrative autonomy.1 The
responsibilities of LEOs can range from determining political boundaries, establishing eligibility for exercising

1Local jurisidictions are creatures of and subordinate to state governments, except in “home rule” states, and it is not clear
how much home rule includes election administration. The legal doctrine in play is “state sovereignty” and “Dillon’s rule”,
established by the Hunter v. Pittsburgh decision. See Burns (1994) for an extended discussion of the legal and political status of
local governments.
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Figure 1: Illustrating the 75:8 Problem in United States Election Administration

the franchise, selecting appropriate election technology and election infrastructure, conducting early and
election day voting and processing mail ballots, certifying election results, and conducting post-election
audits. Yet, because state election codes are so important, we have to pay close attention to how our sample
represents different states.

A related contextual feature that has to be considered is what is referred to in the field as the size
principle or the 80:20 problem, though a more accurate term may be the “75:8 problem”. Local election
official in the United States vary enormously in the numbers of voters that they serve. As shown in Figure 1,
75% of LEOs serve 8.4% of voters, while 8.4% of LEOs, serving in large jurisdictions, serve 75% of voters. In
addition, a small number of states contain a large number of the smallest jurisdictions and a small number of
jurisdictions (in a small number of states) serve large numbers of voters. The consequence is that a randomly
chosen set of “small”, “medium”, and “large” jurisdictions may not be representative of the population in
those categories. While we may not make assertions about a single American voter experience, we want a
good sense of the range of voter experiences and how the voting experience can be improved by the actions
of LEOs.

The implication is that while our research is focused on local election officials, sampling occurs among
local election jurisdictions. These local jurisdictions are distributed unequally across the fifty states and the
District of Columbia. All of these different levels are substantively important. Our sampling procedure has
to assure a sufficient distribution across states, among LEOs, and among service populations (i.e. registered
voters).

A typical solution in situations like this, where an important quality of the population is highly variant
or highly skewed, is to use unequal probability sampling, choosing sampling probabilities relative to the
size of the underlying unit (i.e. larger units are sampled with much higher probability). However, there is
more than one method of sampling using unequal inclusion probabilites, and the mathematical and empirical
question we face is: which to use?
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We are still in the process of working out the technical portions of our work, but in the third section of
the paper, we present a first cut at theoretical results, based on mathematical derivations and simulations.
Within the field of unequal probability sampling, there are multiple mathematical techniques (algorithms)
that can draw a sample proportional to size. In 2018, we used the the “minimal support sampling” method
implemented in the sampling package in R (Tillé 2016, 2010) because it requires no prior assumptions and
was straightforward to implement. However, the problem we discovered in the second wave of our survey
was that the minimal support method was not replicable, i.e. we could not reproduce our 2018 sample.2

Simulations revealed that in the presence of a very skewed distribution, the minimal support method creates
potential anomalies by over-sampling one or the other ends of the population distribution. We have not been
fully able to mathematically demonstrate this phenomenon, but the results of our simulations are consistent.
Another sampling method—the random systematic method—avoids these problems.

There is a second problem that we encountered that is common to all unequal sampling methods:
very large survey weights.3 These are a particular issue when surveying LEOs because of the federalist
overlay. A small jurisdiction in Michigan or Texas, for example, simply can’t “stand in” or “represent” a
small jurisdiction in Connecticut or Oregon. While excessively high survey weights are a point of concern
that we are still investigating, the minimal support method, because it occassionally oversamples small cases,
sometimes ends up with too many sampled cases with large weights and, consequently, highly variant weighted
means. Even though, in the long run, weighted means from samples based on the minimal support method
converge on the population mean, the chance for an anomalous sample is far too high for us to recommend
this method. Our simulations show that on data that share the specific characteristics of the LEO population,
the minimal support method produces these kind of samples far more frequently than the random systematic
method.

There is no perfect way to sample the population of LEOs. The federalist overlay, and the extreme
skew in the service population, make it a complex enterprise. Ultimately, we hope in this paper to evaluate
the downsides of unequal probability methods (large weights) along with any critiques of other methods
(which we have not yet included in this work). We are able to conclude at this stage that one specific type of
unequal sampling (minimal support) is worse than other types, and we demonstrate this in the final section
of the paper.

Identifying the Universe of Election Jurisdictions and Local Elec-
tion Officials

The starting point for any research project focused on local election administrators is to identify and create a
list of the population of LEOs, and subsequently develop a sampling design that produces a statistically valid
sample with responses that can be generalized to the population of LEOs and their service populations. We
adopt in our research a definition of “local election official” proposed by Hale, Montjoy, and Brown (2015),
p. 2-3: “local election officials are the local officials with statutory responsibility for elections at the local
level.” While this definition is straightforward, American federalism and diversity combine to create a series
of decision points about what constitutes the universe of LEOs in the United States.

2Or rather, a sample drawn with a new random seed was notably dissimilar to our 2018 sample.
3For the uninitiated, sampling weights correct for imperfections in the sample, such as discrepancies in coverage or non-

responses, that could lead to discrepancies between the sample and the reference population. They are essentially multipliers
that allow one randomly selected observation to “stand in” for others.
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To start, there is no single, comprehensive list of local election jurisdictions, or the civil servant (or
servants) who has (or have) statutory responsibility for conducting elections in that jurisdiction, and the
existing literature does not use the same list, and uses different procedures for sampling within that list.4

Depending on how you count, there are between 7,858 (Kimball and Baybeck 2013) and 10,370 (Kimball
et al. 2010; Government Accountability Office 2018) local jurisdictions with the primary responsibility
for conducting elections in the United States. As already mentioned, the different totals occur because in
some states, there are sub-jurisdictions that have responsibility for some aspects of election administration.
Notably, one state—Minnesota—lodges responsibility for polling place administration (e.g. deploying election
technology, hiring and training poll workers) at the sub-jurisdictional unit. Studies that use the larger N
consider these sub-jurisdictional units as the basic unit of analysis. The fact that the total varies is an early
indicator of the inherent risks in trying to make sweeping conclusions about election administration and
election administrators in the United States. American elections are administered by the local election officials
in counties, municipalities, and townships throughout the county. Hale, Montjoy, and Mitchell (2015) write
that: “. . . the actual conduct of elections is primarily a function of local governments,” while Alex Ewald,
in his historical study of American election administration, reminds us that “the United States has always
placed responsibility for running national and state elections in the hands of city, town, and county officials”
(Ewald 2009). The total number of jurisdictions also varies depending on what “statutory responsibility”
you are interested in examining. We have encountered the higher total when the interest is in deployment
of election technology on Election Day (and in some cases, for pre-election day voting). For example, the
Government Accountability Office’s 2018 report, “Voting Equipment Use and Replacement,” reports 10,340
election jurisdictions in the United States (Government Accountability Office 2018). The GAO conducted a
survey of the “chief election official within the jurisdictions selected” to understand the choices made about
voting technology and polling place management.5

In summary, when trying to generalize about election administration in the United States, there are
(at least) three important issues to consider:

1. Legislating and rule making are done primarily at the state level, so a representative sample will need
to assure a sufficient distribution of responses across states.

2. The actual administration of elections is done at the local level, and the granularity of “local” varies
across states. In 42 states, elections are administered at the county level, but in 8 states, elections
are administered at the village, township, and municipality level. This has an important impact on
how we sample. Among the 7,800 LEOs in the US, 3,400 work in just two states — Wisconsin and
Michigan — and another 1,500 administer elections in towns and villages in New England. A simple
random sampling scheme will therefore vastly over represent these states, even though it may do a good
job representing the population of all LEOs.

3. Finally, voters are not evenly distributed across jurisdictions; Figure 2 shows the significant right skew
in registered voters by jurisdiction. One jurisdiction alone — Los Angeles County — contains 3.2% of

4We use the plural because in Missouri, there are two individuals, one Democratic and one Republican, who are appointed
to act at the local election officials for each county. A number of other states have local election boards, but there is usually
an individual, sometimes the head of the board, other times a separately appointed individual, who can be identified as the
administrative lead.

5See Appendix I of the GAO report for a detailed description of their sampling strategy, also quoted below. We specifically
do not use the term “chief election official” because that term refers to official in charge of elections at the state level (Hale,
Montjoy, and Brown 2015, 3), a usage we have confirmed in personal communications with a number of field matter experts.
Kimball Brace, president of Election Data Services, similarly reports 10,071 as the total number of LEOs in 2013 (cited in Kropf
and Pope 2019, 188), possibly because Brace tracks and maps the use of election technology across the United States.
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Figure 2: Distribution of registered voters by jurisdiction

ALL registered voters in the country. The largest 10% of jurisdictions serve almost 80% of registered
voters. If we are interested in not just generalizing to LEOs, but to LEOs who administer elections to a
substantial portion of the American public, we must take voter totals into account.

Our final sample universe of 7,834 LEOs is 2,000 less than the GAO total, and much closer to the
total of 7,858 reported by (Kimball and Baybeck 2013), with the difference almost completely a function
of Minnesota.6 We consolidate some additional jurisdictions in our sample because of choices that were
made in New Hampshire, which reports data to the EAVS in some cases at units below the MCD level. For
example, Concord, NH results are reported in 10 different lines in the EAVS (each ward separate), while
we consider Concord, NH to be a single administrative unit with a single LEO. Our target sample size was
3,000, assuming a response rate of approximately 30% (the response rate achieved by Kimball and Baybeck).
Readers should be aware of the variations in the sample universe when comparing across studies.

Limitations of the Sampling Methods Used In Previous Surveys

Once our population universe is defined, we need to decide upon a method for choosing our sample. Population
variation within the sample universe has a significant mathematical impact on any results that we might
find—a simple random sample will include lots of small jurisdictions and very few large jurisdictions. The
size of the large jurisdictions makes them impactful to more voters, however, so it might be sensible to
sample all of the largest jurisdictions to ensure that we have results representing this large chunk of voters.

6Like Kimball and Baybeck, we sample at the county level in Minnesota and at the MCD (minor civil division) level in
Wisconsin and Michigan, relying on past research that shows that most administrative decisions are made by township or
municipal clerks in the latter two states, and by county administrators in Minnesota. See (Huefner et al. 2007), cited in Kimball
and Baybeck (2013), p. 131.
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Surveys dealing with this sort of skewed population include establishment surveys (e.g. surveys of hospitals,
universities, governments, etc.), which are common in economics research (DesRoches 2011), as well as surveys
dealing with land use or geographical area (“Sampling Techniques” n.d.).

Previous surveys (“How Local Election Officials View Election Reform: Results of Three National
Surveys” 2011; Kimball and Baybeck 2013; Kimball et al. 2010) recognize these facts, and most have adapted
stratified sampling methods with manually-defined size bins. For example, a seminal set of surveys were
administered after HAVA, overseen by Eric Fischer of the Congressional Research Service and Professors
Kevin Coleman and Carol Silva, stratified by “size,” using the number of jurisdictions as a surrogate for size
(See (“How Local Election Officials View Election Reform: Results of Three National Surveys” 2011), Fischer
and Coleman (2005), and Moynihan and Silva (2008)):

The three surveys were conducted after the November 2004, 2006, and 2008 federal elections,
between December and the following April. For each survey, a sample of approximately 3,800 LEOs
was drawn from the roughly 9,000 election jurisdictions in the 50 states. To ensure that LEOs from
all states were included, but that states with large numbers of LEOs were not disproportionately
represented (see Figure A-1), a modified random-sampling regime was used, as follows: Surveys
were sent to all LEOs in states with 150 or fewer local jurisdictions. For the ten states with more
than 150 LEOs, a sample of 150 was chosen at random from the local jurisdictions, and surveys
were sent to those LEOs. (“How Local Election Officials View Election Reform: Results of Three
National Surveys” 2011, pg. 81)

This sampling procedure appropriately adjusts for the differences across jurisdiction size, and the overwhelming
number of small jurisdictions, but using an awkward algorithm that is based in part on historically contingent
decisions about drawing county lines.

Kimball and Baybeck (2013) advanced upon the CRS and served as a model for our research. They
developed a sampling rule that was not connected to specific states (or the number of jurisdictions within
states), but is tied directly to jurisdiction size:

• 100% inclusion probability for jurisdictions with a registered voter population above 50,000;
• 50% inclusion probability for jurisdictions with a registered voter population between 5,000 and 50,0000;
• 25% inclusion probability for jurisdictions with a registered voter population below 5,000.

It is illustrative to read their rationale for these decisions at length:

To simplify some of the analyses that follow, we divide the universe of local jurisdictions into
three size categories: small (serving less than 1,000 voters), medium (serving between 1,000 and
50,000 voters), and large jurisdictions (serving more than 50,000 voters). We chose 1,000 voters
as one dividing line because jurisdictions with fewer than 1,000 voters are generally small towns
that have no more than a couple of polling places and a handful of poll workers. We expect these
jurisdictions to have a different election administration experience than larger jurisdictions. In
addition, roughly one-third of the jurisdictions served less than 1,000 voters in recent presidential
elections, so this serves as a natural break in the data.

We chose 50,000 voters as the other dividing line because jurisdictions serving more than 50,000
voters tend to be in densely populated metropolitan areas with a large central city. Thus, the
largest jurisdictions have different infrastructure and transportation networks than the medium-
sized jurisdictions, which are mostly rural and exurban counties. Together, these dimensions
characterize what we define as small, medium, and large jurisdictions in a variety of analyses
below. The smallest jurisdictions are primarily in the upper Midwest and New England, with a
smaller number in the Plains. Large jurisdictions are concentrated in the major metropolitan
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centers of the United States. (Kimball and Baybeck 2013, 132)

Within those three strata, they sampled all 462 units in the top stratum, 2000 from the 4619 medium sized,
and 500 from the smallest. They made these choices in order to “to ensure representation of the largest
jurisdictions” (2013 p. 132) and to have the ability to make generalizable statements about LEOs serving
in medium- and small-sized jurisdictions. This sampling algorithm improves upon the CRS, but because it
relies on large population categories, it still has the undesirable feature of sampling a unit with a registered
voter population of 49,999 with the same probability as a unit with 1/50th the size.

A third and more sophisticated version of the Kimball and Baybeck method was developed by the
Government Accountability Office (Government Accountability Office 2018).

To obtain a representative sample that included a mix of both rural and non-rural jurisdictions, we
used a two-level stratified sampling method in which the sample units, or jurisdictions, were broken
out into rural and non-rural strata. . . . Of the 10,340 local election jurisdictions nationwide, 70
percent were classified as non-rural while 30 percent were classified as rural. . . . We selected a
two-level stratified sample of 800 local election jurisdictions. Using the RUCC [rural and urban]
codes, we allocated 600 sampling units, or jurisdictions, to the non-rural stratum and 200 to
the rural stratum. To obtain a sample that also reflected the population distribution across
jurisdictions nationwide, we used the population of the local election jurisdiction as the measure
of unit size and selected the sample units within each stratum with probability proportionate to
population of the local election jurisdiction, without replacement. . . . Because the sample was
selected with probability proportionate to population size, any jurisdiction (county or MCD) with
more than about 225,000 people was selected with certainty.

Like Kimball and Baybeck, the GAO recognizes the different administrative environment faced by administra-
tors in rural and urban jurisdictions. In order to do this, they stratified their sample by “rural” and “urban”
counties and “minor civil jurisdictions” (the MCD–level states are Connecticut, Maine, Massachusetts, Michi-
gan, Minnesota, New Hampshire, Rhode Island, Vermont, and Wisconsin), and then sampled proportional
to population within these two strata. When applied to their sampling universe, this meant that at some
cutpoint, units were sampled with a probability of 1.0.

The Kimball/Baybeck and GAO sampling procedures resulted in a desirable set of jurisdictions in the
final sample (although there are some details in the CRS samples that are difficult to unpack), but there are
problems that we would like to avoid. In the case of the CRS, relying on jurisdiction count (the number of
jurisdictions in each state) rather than jurisdiction size causes some disparate units to have the same inclusion
probability, such as Harris County, TX, with a registered voter populations of 2,258,976, and King County,
TX with a registered voter population of 176. Kimball and Baybeck perform much better, but their algorithm
still treats the endpoints of their categories identically—a jurisdiction with a registered voter population of
49,999 is sampled with the same probability as one with a population 1/50th as large.

We wanted to develop a mathematically rigorous method of sampling proportional to the population of
registered voters which does not rely on a manually-defined formula for stratifying (it may be that the GAO
technique of stratifying by rural/urban may work well, and avoid the mathematical anomalies we identify in
the rest of this paper). An additional advantage of developing a mathematically rigorous method of sampling
is that it will allow us to take better advantage of statistical techniques like hypothesis testing and confidence
intervals, and should be replicable across studies. In other respects, our sampling design follows in spirit
and in logic the sampling approach and presentation guidelines developed by Kimball and Baybeck (2013)
and the research team at the GAO, and like the GAO, we rely on a method with unequal probabilities of
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sampling. Like those research teams, we are cautious about interpreting weighted means without paying
close attention to variation across jurisdiction size.

Unequal probability sampling

In any sampling method, each unit of the population is assigned an inclusion probability—-the probability
that an individual unit will be included in a sample. For simple random sampling (or any equal probability
sampling method), this inclusion probability is the same for every unit k. An unequal probability sampling
method is a sampling method in which the inclusion probabilities are not identical for every unit in the
population. A stratified sampling method can be an unequal probability method, if the inclusion probabilities
differ across strata.

Mathematically, the size of jurisdictions in the United States follows a log-normal distribution, i.e. the
natural logarithm7 of the observations is approximately normally distributed, which has a significant right
skew (nearly 80% of American voters live in the largest 10% of jurisdictions).8 One solution for a highly skewed
distribution is to sample proportional to unit size. This is often referred to as PPS sampling: probability
proportional to size (Lavrakas and Cohen 2011). Sampling among unequally sized entities is a known issue in
the sampling literature, and is typically referred to as “establishment sampling” (examples include sampling
firms or schools). The method we employ derives an unequal probability of selection based on the size of the
service population, in this case, the number of registered voters.9

In the following sections, we explore the mathematical and statistical foundations of these methods,
and show how sampling relative to unit size, using inclusion probabilities (the foundation of the “minimal
support” method), may interact with the underlying sampling formula in such a way that the largest or the
smallest units are badly under sampled.10

Use cases

Two typical use cases of unequal probability sampling are for establishment surveys and multistage sampling.

• An establishment survey is a survey where the unit of analysis is some sort of establishment: hospitals,
universities, governments, etc. For example, a survey attempting to find out the total electricity
consumption in a state might want to over sample the largest counties, as the impact of one high-
consumption county on the total is greater than the impact of one low-consumption county.

• Multistage sampling is a sampling method that consists of multiple stages, often having a between-strata
selection stage and a within-strata selection stage. If not every population stratum is to be represented
in the sample, then a selection of strata is made using PPS sampling on the size of each strata. Within

7Or the logarithm with any base.
8See Figure 2 previously, and Figure 9 in the Appendix.
9The GAO used the population size, because "Census data were readily available for all counties and MCDs nationwide; we

were able to find registered voter totals for nearly all counties and MCDs. Our thanks to the Director of Elections for the State
of Michigan, whose office provided us registered voter totals for MCDs for the state.

10In our 2018 survey, we opted for the “minimal support method” that we are now advising against (Gronke, Paul and
Crawford 2019). At the time, to confirm the validity of that sampling method, we compared the percentage sampled in each of
the “Kimball-Baybeck” and “GAO” size categories, and the proportions were very close. Attempts to replicate the sampling
formula prior to the 2019 survey revealed that we benefited literally from the luck of the draw. Simulations using the minimal
support method, illustrated below, show that samples could have easily deviated substantially from an optimal mixture of small,
medium, and large jurisdictions.
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N−1
N

)n
Equal Without n
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)n
Unequal Without Equation 6

Table 1: Common inclusion probabilities for standard classes of sampling methods

each of the sampled strata, a subset of cases are sampled for analysis. An example of this might be in
selecting public school teachers to survey. The schools are selected using PPS based on the number
of teachers (between-strata), then within each school we might conduct a SRS of individual teachers
(within-strata).

Like any other method, there are both practical and mathematical reasons for using an unequal
sampling method. When the variable of interest is correlated with size, PPS can provide greater efficiency
(lower variance) than SRS. Even if this is not the case, it may be more practically convenient to employ
unequal probability sampling. The school teacher example might be one such case - sampling a subset of
schools (and oversampling large schools) will reduce survey costs compared to a genuine SRS of the population
of teachers.

Inclusion probabilities

There are a few different ways to select appropriate inclusion probabilities for a PPS method without
replacement,11 but the literature has generally stuck to one specific formulation. We call this the “linear
method”, and detail its construction in the Appendix. There we additionally describe another formulation
of inclusion probabilities (the “sequential method”) and contrast the two methods. For many populations,
the linear method will produce a cutoff point, at which every observation with a size larger than the cutoff
point will be included in the sample with probability 1. As shown below, in our LEO population the cutoff
point is 16,808. For comparison, Kimball and Baybeck (2013) had a cut-off point of 50,000 , and the GAO
identified a cut-off point in their sampling – “Because the sample was selected with probability proportionate
to population size, any jurisdiction (county or MCD) with more than about 225,000 people was selected with
certainty” (Government Accountability Office 2018, 57).

Figure 3 shows the relationship between inclusion probabilities (from the widely-used linear method)
and our size variable of registered voters.12 The inclusion probabilities are directly proportional to size until
the cutoff point is reached, at which point all of the inclusion probabilities are 1.

11Methods with replacement typically have higher variance in estimates, and are often avoided as such. Typical inclusion
probabilities for other methods (with replacement, or equal inclusion probabilities) are included in Table 1.

12The x-axis of the graph was truncated at 50,000, to better illustrate the relationship in question. On a scale of 0 to 6 million,
the diagonal line here appears vertical.
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Figure 3: Density and inclusion probabilities of LEO population

Methods for analyzing an unequal-probability sample

As briefly mentioned earlier, the (unweighted) sample mean is a biased estimator of the population mean
under an unequal sampling scheme; i.e. we do not expect a mean of sample means to approximate the true
population mean. In fact, it should be biased towards the cases with larger inclusion probabilities.

One unbiased estimator for the population mean of a variable Y under an unequal sampling method
(without replacement) is the Horvitz-Thompson estimator (Horvitz and Thompson 1952):

µ̂HT = 1
N

∑
k∈s

yk
πk
. (1)

This is a weighted mean, with a weight (as applied to the sample mean) on each unit of wk as follows:13

wk = n

Nπk
. (2)

This weight “re-balances” our sample (which over sampled large cases), by assigning a larger weight to
the cases that were given a smaller inclusion probability.

While we can often account for a known bias through weighting, accounting for variance is harder. For
fixed n, the variance of the Horvitz-Thompson estimator is

V (µ̂HT ) = 1
N2

N∑
i<j

(πiπj − πij)
(
yi
πi
− yj
πj

)2
, (3)

and

v (µ̂HT ) = 1
N2

n∑
i<j

πiπj − πij
πij

(
yi
πi
− yj
πj

)2
(4)

13Some of these quantities presume that the population size N is known in analysis (though this can be estimated, see Overton
and Stehman (1995)), or require that the sampling probabilities πk are known for all units k of the population.
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is an unbiased estimator for V (µ̂HT ) (Sen 1953; Yates and Grundy 1953).14

The above listed variance will be small when

• The πk are proportional to the yk, and/or
• The values for πij − πiπj are small (Sunter 1977).15

Assuming normality via the Central Limit Theorem,16 we can use these to derive a 95% confidence
interval for the true population mean of Y :

[
µ̂HT − 1.96

√
v (µ̂HT ), µ̂HT + 1.96

√
v (µ̂HT )

]
(5)

PPS compared to other methods

We earlier mentioned that unequal probability sampling can outperform SRS on variance when the quantity
of interested is correlated with the inclusion probabilities (Kozak and Zieliński 2007). This is clear from the
given variance formula, if we note that the πk are constant under SRS. In this case, the term

(
yi

πi
− yj

πj

)
will be no less than yi − yj for each pair i, j under consideration (since each πi ≤ 1). If the πk of unequal
probability sampling are approximately proportional to the yk of interest, however, then the terms yi

πi
and yj

πj

will have a small difference since both are close to 1. The goal of unequal probability sampling is to bring the
inclusion probabilities more in line with variables of interest (thus lowering the variance of our estimator) by
leveraging a correlated size variable which is known for the whole population.

For some alternative intuition about this variance, consider the earlier example where we wish to
estimate the total electricity consumption of a state by sampling its counties. Electricity consumption might
likely be correlated with the population of a county, in which case the natural variation in simple random
sampling would be amplified by the population skew and provide a highly variant estimate of total electricity
consumption. That is - if we break our sample up into “small consumers” and “large consumers”, the same
amount of variability in which cases are sampled will cause a higher variability in the consumption among the
large consumers (compared to the small), and cause larger variability in the estimate of total consumption.
If we over sample the large cases, however, we would obtain a less variant estimate among the larger cases
(sample variance shrinks with n) and thus a less variant estimate overall (while the variance of the small
cases increases, it does not keep pace with the decrease in variance among large cases). Unequal probability
sampling would give a less variant picture of the largest consumers - and thus a less variant picture of total
consumption.

14Horvitz and Thompson developed a different estimator, but the Sen-Yates-Grundy variance estimator is generally seen to be
more efficient and always produce positive estimates (Stehman and Overton 1994).

15In practice, it is difficult to compute the joint inclusion probabilities πij (the chance that units i and j are both included
in a given sample) for an arbitrary unequal probability sampling method. Under specific sampling schemes, estimators of the
Horvitz-Thompson variance have been developed that do not depend on the joint inclusion probabilities.

16We are (as of yet) unable to prove the Central Limit Theorem in the specific case of either minimal support sampling
or random systematic sampling. Some literature discusses the applicability of the CLT for other PPS methods (Berger 1998;
Overton and Stehman 1995), but nothing we found comments on these specific methods. Proceed with caution when calculating
confidence intervals under these methods.
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Comparing PPS sampling methods

Minimal support sampling

Given a set of inclusion probabilities, there are numerous ways to create a sample according to these
probabilities. One sampling method in the class of unequal probability methods is the minimal support
scheme, proposed by Deville and Tillé (1998) as a constructive application of a design that minimizes the
total number of possible samples that must be considered (at most N) while still respecting the given
inclusion probabilities. In the R programming language, this is implemented by the sampling package with
the UPminimalsupport() function. The process is as follows (Tillé 2006, pp. 103):

Set π(0) = π. For t = 0, 1, 2, . . . until a sample is obtained,

1. Define
At = {k | πk(t) = 0},

Bt = {k | πk(t) = 1}, and

Ct = {k | 0 < πk(t) < 1}.

2. Select a subset Dt of Ct such that |Dt| = n− |Ct|. Dt can be selected as desired; in R the function is
implemented using a uniform random sample to select Dt.

3. Define
α(t) = min

{
1− max

k∈(Ct\Dt)
πk, min

k∈Dt

πk

}
,

πak(t) =

0 if k ∈ At ∪ (Ct \Dt)

1 if k ∈ Bt ∪Dt

, and

πbk(t) =



0 if k ∈ At

1 if k ∈ Bt
πk(t)

1−α(t) if k ∈ (Ct \Dt)
πk(t)−α(t)

1−α(t) if k ∈ Dt

.

4. Select π(t+ 1) =

π
a(t) with probability α(t)

πb(t) with probability 1− α(t)
.

5. If the selected vector is a sample (that is, it only contains values from {0, 1}), stop. An observation k is
included if πk(t+ 1) = 1 and excluded if πk(t+ 1) = 0.

This method will produce a sample of size n. A less technical explanation of the method would be:

1. Include all probability-1 cases (say there are b of these), exclude all probability-0 cases.

2. From the remaining cases (probability between 0 and 1, exclusive), draw a uniform random sample of
size n− b.

3. Calculate a penalty term λ, which is the lesser of:

13



• One minus the highest inclusion probability πk of a case k that was not included in this uniform
sample

• The lowest inclusion probability πk of a case k that was included in this uniform sample17

4. Accept the given sample with probability λ.

5. If rejected, rescale the probabilities for the next iteration. The effect of this rescale will alternate
(unevenly) between permanently including the lowest case currently included, or permanently excluding
the highest case currently excluded.

Because each iteration either permanently includes or excludes a case from the sample, the next
iteration is effectively selecting from a population of size N − 1. Since our population is of size N , this
method will consider at most N samples as its support (hence the name “minimal support”). We believe that
this alternation is the source of the variation that we see empirically below. Because the method distinctly
categorizes either the largest or smallest remaining case at each step, a given sample has three “boxes” when
the algorithm stops running.

• The first box contains every case that was definitively tossed out until the algorithm stopped. These
will be all of the smallest cases.

• The second box contains every case that was definitively tossed in until the algorithm stopped. These
will be all of the largest cases.

• The third box contains the cases that were randomized on the last step of the algorithm.

Since these were sampled uniformly at random, the cases in the third box were not chosen based on
their underlying size. In that way, the minimal support method can be thought of as a dynamic or randomized
version of the stratification method based on size used by Kimball and Baybeck (2013): every case smaller
then a is dropped, every case larger than b is included, and the cases in between are chosen uniformly at
random to fill out the rest of the sample (where a and b are determined by the algorithm).

This leads to significant correlations between which cases end up being sampled in repeated draws.
A small case which is not included in the sample may have been dropped at random, or it may have been
dropped because it went below the lower cutoff a - in which case, every case smaller than it would also have
been dropped. The more this happens (that is, the smaller the case is), the higher the correlation between
its probabilty of inclusion and its neighbors’ probability of inclusion. The same is true for large cases being
included. If this is the case, the reason that we see occasional samples with far too many small cases is
because the algorithm stopped too “early” and sampled a wide swath of the population uniformly at random,
which would oversample chunks of the population that were intended to have a small inclusion probability.
This phenomenon will be explored more in our simulations below.

Random Systematic Sampling

Instead of the minimal support sampling algorithm, we recommend that the random systematic method be
used for populations with the same characteristics as American LEOs. The random systematic sampling
algorithm is as follows:

17The phrase “penalty term” is a little counter intuitive here, because a higher value is a better sample. This term assesses
how well our uniform sample matches the unequal inclusion probabilities. If the term is large, that means that we included the
highest-probability observations and excluded the lowest-probability observations.
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1. Randomize the order of the units.

2. Arrange the units as line segments on a number line, where the “width” of each segment corresponds to
its inclusion probability. The total length of the line segments will be the sample size n, as the inclusion
probabilities sum to n in unequal probability sampling.

3. Include in the sample the cases whose segments contain any integers, or have their right endpoint on an
integer (the left endpoint would be equivalent, but only one of the two should count).

This will produce a sample of size n that respects the provided inclusion probabilities. Any segment
with πk = 1 will be included, as any line segment of length 1 cannot be squeezed in between two integers
without touching either one. Since the position of each segment is random, a segment of length p will have
probability p of containing an integer, and thus will be sampled accordingly.

The randomization step is important to ensure independence between sampled points. Suppose there
was no randomization, and the segments were ordered from shortest to longest. If there are many short
segments clustered together, one segment being included would likely mean that its neighbors are not included.
This correlation is something to avoid, and the randomization step does so sufficiently.

Simulations

Here we will show the empirical variation produced by the minimal support sampling scheme, as compared to
other methods. Consider five samples of size n = 3000 conducted with the minimal support method, shown in
Figure 4. The black curve above shows the density of registered voters for the entire LEO population. While
any of these samples should be functionally equivalent to the others, the variation in distribution between the
five is notable. This would seem to indicate that some typical properties (mean, variance, etc.) of any given
sample using this method might differ widely between two functionally equivalent samples.

For comparison, consider simulations of three other common unequal probability sampling methods:
Poisson Sampling, Random Systematic Sampling, and Midzuno Sampling. As we see in Figure 5, all four of
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Figure 5: Empirical verification of inclusion probabilities among four PPS sampling methods

Table 2: Properties of 100 simulated sample means

Sampling method Mean Variance

Poisson 67037.00 204444.5420

Random Systematic 67017.35 1213.0544

Midzuno 67015.47 420.0097

Minimal Support 67176.25 768137.2175

these methods equivalently sample each jurisdiction according to its inclusion probability.

In Figure 6, we compare the distribution of registered voters in 100 samples from our population using
each sampling method. While all 100 samples using the other three methods produce a similar distribution of
registered voters, the minimal support method

In these three alternate sampling methods, we see much less variation in the distribution of jurisdictions
sampled. To quantify this, consider the distributions of the (unweighted) sample means of total registrants
from 100 simulated samples in Figure 7 and Table 2. While the three alternative methods have a very
similar center of their respective distributions of sample means, the spread of the minimal support method is
significantly larger than that of the Midzuno or random systematic methods.18

18The Poisson method also has large spread here, for reasons unknown. A more primary reason that we avoided Poisson
sampling is that it does not guarantee an exact sample size. The Midzuno method was rejected for its complexity and computing
time, as compared to the conceptually simpler and faster random systematic method.
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The Impact of Survey Weights On Our Survey Results

We sampled proportional to size, and as a result, a larger jurisdiction is more likely to be sampled than
a smaller jurisdiction. This causes our sample to over represent large jurisdictions (compared to smaller
ones), and a weighting scheme will have to be employed to obtain accurate estimates of parameters such
as the population mean or variance. When very small jurisdictions are included in a sample, very large
weights will appear in the data. While the Horvitz-Thompson estimator does provide unbiased estimates of
population parameters, large weights will increase the variance of our estimator. Additionally, the earlier
issues raised about representation in regards to federalism and state laws are particularly relevant when
considering sampling weights for an LEO survey.

Moving forward, we are exploring different weighting schemes with which to present our LEO survey
data. In 2018, we chose to present the data unweighted and broken down into groups based on jurisdiction
size, when possible. This allowed us to present the views of LEOs as a population, but still take into account
the differences between LEOs in large and small jurisdictions. Because we were not weighting our final
estimates or using Horvitz-Thompson estimators, the increased variance in sample mean estimates using
the minimal support method was disadvantageous. We are abandoning this method, and instead used the
random systematic method, which produces a much more consistent sample in a given draw.

For 2019, we have multiple options for survey weighting. Our final survey report is in the drafting
stage, and we invite input on this question.

• Present unweighted results. This is complicated, because the mean is based on an arbitrary balance
between large and small jurisdictions (arbitrary due to the uncertainties of response rates). Compared
to the national population of LEOs, an unweighted mean under represents the smallest jurisdictions.

• Present unweighted results, but bin results into different size categories, as we did in 2018. This avoids
presenting averages based on arbitrary sampling balances and conveys a clearer sense of the distribution
of responses present in the LEO population.

• Present weighted results to allow generalization to the population of all LEOs. This would assign a
high weight to the smallest jurisdictions (which were least likely to be sampled), and also inevitably
reflects the election ecosystem of a small number of states with many small jurisdictions. The weight
decreases until the cut-off point identified above, and then flat line. This focuses more on the responses
of individual LEOs. Given the increase in questions about “origination stories” this year, this may be a
good option. However, last year we observed significant differences on many questions between

• Present weighted results to allow generalization to the population of registered voters. This would
assign a high weight to the largest jurisdictions. For example, a county with 1,000 registered voters
would be weighted twice as heavily as a county with 500 registered voters (or similar). This focuses
more on the impact of administrative responses to voters, but leads to some exceedingly high or low
weights. In creating this weight, we would also have to consider the undersampling of small jurisdictions
due to our sampling method.

All of these are complicated by nonresponse bias. If we assume that the nonresponse is truly random
(not correlated with any factor that influences our results), then none of these methods are better than the
others. If it is correlated with registered voters, number of employees, or election cycle scheduling, then we
should attempt to adjust for non-response bias. We have some evidence that our response rates are correlated

18



Table 3: Breakdowns of Key 2019 LEO Characteristics

Size (Registered Voters)

Demographic Overall Weighted < 25,000 25,000 to 250,000 > 250,000

Female 77.2% 79.8% 87.0% 68.5% 40.8%

$50,000 or more 73.8% 47.8% 62.4% 86.7% 100.0%

White 94.9% 96.6% 97.1% 92.8% 87.8%

College and above 59.5% 52.2% 52.2% 65.9% 87.8%

50 years or older 70.2% 77.0% 73.9% 65.7% 62.5%

Elected 50.4% 62.4% 58.7% 40.7% 29.2%

Conservative 43.1% 39.3% 46.2% 38.9% 40.0%

with jurisdiction size. For example, in our 2018 survey we had more nonresponses (proportionally) from small
jurisdictions than from large jurisdictions.19 An unweighted analysis would under represent these smaller
jurisdictions, tilting the balance towards large jurisdictions on a question whose answers were correlated with
jurisdiction size.

For comparison, Table 3 presents some demographic information collected in our 2019 survey. The
“Overall” column presents unweighted averages, the “Weighted” column presents estimates weighted according
to the Horvitz-Thompson estimator (referencing the entire population of LEOs), and the final three columns
are unweighted averages within three size categories. As we can see, the weights have only minimal effects on
some quantities, and enormous effects on other quantities.

To illustrate, our unweighted estimate of the percentage of local election officials who are 50 years or
older is reported in the lower left hand cell as 70.2%, while the weighted estimate is 77%. The difference in
the estimates is caused in mathematical terms by larger survey weights applied to LEOs from the smallest
jurisdictions, a larger percentage of whom report that they are 50 years old or older.

On the whole, weighted estimates will be more influenced by the smallest jurisdictions, which get
comparatively larger weights, when compared to the unweighted averages. This is borne out in our preliminary
results, as these variables which are all relatively correlated with size shift toward the values in the “< 25,000”
column when weighted. The reason that the weighted averages sometimes go even lower than the value in
this column is because the weights are calculated continously. The weighted averages show, for example,
that compensation in the very smallest jurisdictions is much lower than the average compensation across the
sub-25,000 category. In our survey reports, we use more detailed bins than shown here (generally opting for

19In addition, in 2018, we ran a dual-mode survey (online and mail), but in 2019 ran a mail survey. The reason we ran a
dual-mode survey in 2018 is that we initially began with online only, but initially had low response rates in smaller jurisdictions.
Our diagnosis, reached in consultation with our advisory committees, is that cybersecurity protections put in place after 2016
made many LEOs wary of clicking on complex URLs, even when they had been pre-notified of the legitimacy of the link. A few
weeks after the survey had been in the field, we produced a print version. In 2019, we had hoped that we would be able to
use a single mode of administration, but this year, we had lagging responses from the largest jurisdictions, and distributed an
electronic version of the instrument as a PDF. If there are future LEO surveys, we believe the dual-mode should be adoopted
from the outset in order to maximize response rates and minimize non-response bias.
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Figure 8: Horvitz-Thompson weights of LEO data

five categories – see Manson, Gronke, and Adona 2020), and try to be attentive to survey items that are
highly correlated with jurisdiction size.

Finally, we wish to address the large weights produced by unequal probability sampling on our highly
skewed dataset, and assess the practical impact of these weights on our data. The right hand panel of Figure
8 shows the weights that would be applied to a theoretical LEO sample. The highest of these is 3225.7,
which is worrisome considering how many weights (in the medium and large jurisdictions) are less than 1.

These are only theoretical weights, however, as cases which are not sampled do not affect our sample
estimates. Since the largest weights correspond to the lowest-probability cases, it is unlikely that we would
sample one of these cases and have to use such a large weight. In the left hand panel of Figure 8, we report
the actual weights, which reach their maximum at31.2, a much more reasonable number. This is still large
compared to the many weights that are less than 1, but an appropriately-chosen sampling scheme will provide
only a few cases with such large weights. While the large weights produced by this method are of great
theoretical concern, they may or may not be a significant practical problem in a given sample.
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Conclusion and Futher Research

Sampling a diverse and complex population like LEOs is no easy task, and significant care must be taken
when surveying these stewards and reporting quantitative results about them. When surveying a population
like this, we recommend using unequal probability sampling to ensure that a good spread of large and small
units are considered for the sample. Compared to more manually-defined stratification methods, this can
improve the weighting of individual units and reduce the variance in estimates made from the data. The
skew of the population can produce some incredibly large weights, however, so a keen eye is needed to ensure
that the weights sampled are reasonable.

Not all PPS sampling methods are created equal,20 however - the minimal support method, in particular,
has some anomalous behavior when applied to a population as skewed as LEOs. A simpler, faster, and more
reliable method is recommended in the random systematic sampling scheme.

Our most immediate avenue for further research is to flesh out, mathematically, why the minimal
support method performs so unpredictably on our LEO data. We think that the heavy skew in the data causes
this undersampling problem, and perhaps more normal or unskewed data would improve the performance of
this method. Some simulations may help with this as well, exploring how much skew is acceptable before the
method starts to fall significantly behind. The covariance and joint inclusion probabilities between different
population units seems like a good starting point for this line of inquiry, but has shown computationally
prohibitive as of yet.

We are in the process of joining census data to our LEO survey data, which would give us some
excellent “dependent variables” (as a function of registered voters) to test on and discover further impacts of
these methods. In our simulations we were unable to explore the impacts of minimal support sampling on an
unbiased, Horvitz-Thompson mean, because we did not have access to a Y variable that was known for the
entire LEO population and correlated with size.

Additionally, we would be interested in exploring and quantifying the relative gains when using an
unequal probability sampling method compared to a manually-stratified method like Kimball and Baybeck
(2013) or simple random sampling. The claims we previously made as to the superiority of PPS are based in
statistical theory, and an assessment of how much utility is gained (or lost) by using this method would be
welcome.

20How fitting!
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Appendix

Extra plots

In Figure 9, a distribution that exactly followed the theoretical log-normal distribution would trace the red
line. We removed this plot from the body text but wonder if it merits inclusion.

Calculation of inclusion probabilities

Let U be our population, and let k ∈ U be a unit of the population. Let X be a random variable that we
observe for every unit of U ; notably, xk is the corresponding value for the unit k. For a sample of size 1, it is
sensible to assign inclusion probabilities to each k as follows:

πk = xk∑
i∈U xi

.

This has the property that if one unit has a value of X twice as large as another, that unit will have a value
of π twice as large as the other - which is desirable, if we wish to sample proportional to X.
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Linear method

This can be extended to the case where n > 1, using the following algorithm. In R, this algorithm is
implemented by Tillé and Matei’s sampling package with the inclusionprobabilities() function, what
we refer to in the rest of this paper as the minimal support method.

1. For all k ∈ U such that xk ≤ 0, set πk = 0. Define U0 := {k ∈ U |xk > 0}.

2. For all k ∈ U0, compute
p0(k) = n0xk∑

l∈U0
xl
.

3. For the subset U+
0 = {k ∈ U0 | p0(k) ≥ 1}, set πk := 1.

4. Define U1 = {k ∈ U0 | p1(k) < 1}, and n1 = n0 −
∣∣U+

0
∣∣.

5. For all k ∈ U1, compute
p1(k) = n1xk∑

l∈U1
xl
.

6. For the subset U+
1 = {k ∈ U1 | p1(k) >= 1}, set πk := 1.

7. Continue until i satisfies pi(k) < 1 ∀ k ∈ Ui. For these k, set πk = pi(k).

In other words:

1. For cases where xk is not positive, set πk to 0.

2. If xk is greater than the sum of X divided by the sample size n, set πk to 1.

3. For the remaining cases (those not yet given a probability; call these U1), figure out how many are left
to sample. This will be n minus however many were previously set to 1. Call this number n1.

4. A second time, if xk is greater than the sum of X (summed over our smaller U1) divided by the (smaller)
sample size n1, set pik to 1.

5. Keep assigning probability-one cases until none of the unassigned xk are larger than the current metric
of
∑
Uz
xi over nz. For each of these, set πk = nzxk∑

i∈Uz
xi
.

These inclusion probabilities π are in [0, 1], and proportional to the value of X (until reaching a ceiling
of 1). They can equivalently be expressed as

πk = min
{

1, h−1(n) xk∑
k∈U xk

}
(6)

for each k ∈ U0, where

h(z) =
∑
k∈U0

min
(
z

xk∑
k∈U xk

, 1
)
. (7)

It is a consequence of Equation (6) that these inclusion probabilities depend on every value xk in the
population, that is the specific distribution of xk. Individual changes can alter the values for h(z) and tx,
and can also impact which cases get set to πk = 1 in each step of the algorithm.
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Sequential method

An alternative, and perhaps more straightforward, formulation of the inclusion probabilities would be the
result of a sequential sampling design as follows:

1. Sample 1 unit, proportional to size. That is, if a unit has size 5 and the overall size of the population is
100, that unit has a 5% chance of being selected.

2. Remove that unit from the population. If the unit with size 5 is selected, our population’s total size is
now 95.

3. Sample a second unit, proportional to size in the new (smaller) population. Now, a unit with size 4
would have a 4/95 ≈ 4.2% chance of being sampled.

4. Remove that unit from the population. If the unit with size 4 is selected, the total size is now 91.

5. Continue until n units are selected.

At each step in this method, we are selecting a single unit, with probability proportional to its size
among the remaining cases. While obtaining a closed-form sampling probability for each unit is difficult for
large n, we can simulate many samples using this method to approximate the sampling probabilities for a
given case.

Figure 10 compares the formulaic inclusion probabilities obtained from the linear method to the
simulated inclusion probabilities obtained from the sequential method. We simulated 10,000 samples for the
sequential method, to get some convergence in the line connecting each point. Since there is not a formulaic
expression for a given inclusion probability, there is no guarantee that two jurisdictions with the same size
will get the same inclusion probability under the simulation. By increasing the number of trials, the inclusion
probabilities for a given size are less variant and the line in the plot becomes more understandable and
accurate. as applied to our LEO data. The x-axis of the plot is truncated at 75,000 so the differences in
methods are visible at scale.

Comparison of two methods

Now, consider the inclusion probabilities from the linear method that we outlined earlier. Up until the cutoff
point, each πk is proportional to xk, and after the cutoff point each πk = 1. Consider pairs i, j ∈ U with
i 6= j,21 as in the summation of the variance of the Horvitz-Thompson mean estimator. Suppose one of the
cases has πk = 1, without loss of generality call this case j (the math is equivalent for i). Since j is always
sampled, then πij = πi and the term in the variance summation corresponding to i, j is

(πiπj − πij)
(
yi
πi
− yj
πj

)2
= (πi · 1− πi)

(
yi
πi
− yj
πj

)2
= 0.

So for any pair i, j where either πi = 1 or πj = 1, the contribution to the variance sum is 0. When
both πi and πj are less than one, however, they are proportional to xi and xj , respectively. For a variable Y
that is correlated to X, this will make the yi and yj proportional to πi and πj (in the aggregate, at least),
and reduce the contribution to the variance sum. Combined with the zero contribution from cases included

21While i < j may not make sense in all contexts, the notation indicates that we wish to sum over all pairs of elements i, j
where i 6= j, and exclude the reverse j, i of each of these pairs. Since the expression inside the sum does not depend on which
case is i or j, we could equivalently sum over the i, j and j, i and divide the result by two.
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with certainty, we see that this linear formulation of inclusion probabilities minimizes the variance of the
Horvitz-Thompson mean estimator for variables correlated with size.

26



References

Adona, Natalie, Paul Gronke, Paul Manson, and Sarah Cole. 2019. “Stewards of Democracy: The Views of
American Local Election Officials.” Washington, D.C.: Democracy Fund. https://www.democracyfund.
org/publications/stewards-of-democracy/.

Berger, Yves G. 1998. “Rate of Convergence to Normal Distribution for the Horvitz-Thompson Estimator.”
Journal of Statistical Planning and Inference 67 (2): 209–26. https://doi.org/10.1016/S0378-3758(97)
00107-9.

Burns, Nancy. 1994. The Formation of American Local Governments: Private Values in Public Institutions.
Oxford University Press.

DesRoches, David. 2011. “Establishment Survey.” Edited by Paul Lavrakas. Encyclopedia of Survey Research
Methods. 2455 Teller Road, Thousand Oaks California 91320 United States of America: Sage Publications,
Inc. https://doi.org/10.4135/9781412963947.

Fischer, Eric A., and Kevin J. Coleman. 2005. “What Do Local Election Officials Think About Election
Reform?” Congressional Research Service.

Government Accountability Office. 2018. “Elections: Observations on Voting Equipment Use and Replace-
ment.” GAO-18-294. Washington DC.

Gronke, Paul, and Evan Crawford. 2019. “A Locals Guide to the State of Election Administration.” In
Southern Political Science Association. Austin, TX.

Hale, Kathleen, Robert Montjoy, and Mitchell Brown. 2015. Administering Elections: How American
Elections Work. New York: Palgrave Macmillan.

Horvitz, D. G., and D. J. Thompson. 1952. “A Generalization of Sampling Without Replacement from a
Finite Universe.” Journal of the American Statistical Association 47 (260): 663–85. https://doi.org/10.
2307/2280784.

“How Local Election Officials View Election Reform: Results of Three National Surveys.” 2011. Wash-
ington, DC: Congressional Research Service. https://www.everycrsreport.com/files/20110304_R41667_
0906f3151353ce165dccfc85deda70203f6a245c.pdf.

Huefner, Steven F, Daniel P Tokaji, Edward B Foley, Nathan A Cemenska, Moritz College of Law, and
Election Law @ Moritz. 2007. From Registration to Recounts: The Election Ecosystems of Five Midwestern
States. Columbus, Ohio: Ohio State University Michael E. Moritz College of Law.

Kimball, David, and Brady Baybeck. 2013. “Are All Jurisdictions Equal? Size Disparity in Election
Administration.” Election Law Journal 12 (2). https://doi.org/10.1089/elj.2012.0174.

Kimball, David C, Jennifer Collins-Foley, Connie Schmidt, and Chere’ Maxwell. 2010. “SURVEY OF POLL
WORKER RECRUITMENT, TRAINING, AND EVALUATION PRACTICES BY LOCAL ELECTION
OFFICIALS.” http://www.umsl.edu/~kimballd/report_june112010.pdf.

27

https://www.democracyfund.org/publications/stewards-of-democracy/
https://www.democracyfund.org/publications/stewards-of-democracy/
https://doi.org/10.1016/S0378-3758(97)00107-9
https://doi.org/10.1016/S0378-3758(97)00107-9
https://doi.org/10.4135/9781412963947
https://doi.org/10.2307/2280784
https://doi.org/10.2307/2280784
https://www.everycrsreport.com/files/20110304_R41667_0906f3151353ce165dccfc85deda70203f6a245c.pdf
https://www.everycrsreport.com/files/20110304_R41667_0906f3151353ce165dccfc85deda70203f6a245c.pdf
https://doi.org/10.1089/elj.2012.0174
http://www.umsl.edu/~kimballd/report_june112010.pdf


Kozak, Marcin, and Andrzej Zieliński. 2007. “Comparison of Efficiency of Stratified and Unequal Probability
Sampling.” Communications in Statistics - Simulation and Computation 36 (4): 807–16. https://doi.org/
10.1080/03610910701419695.

Kropf, Martha, and JoEllen V. Pope. 2019. “Election Costs: A Study of North Carolina.” In The Future of
Election Administration, 185–200. New York: Palgrave Macmillan.

Lavrakas, Paul, and Michael P. Cohen, eds. 2011. “Auxiliary Variable.” Encyclopedia of Survey Research
Methods. 2455 Teller Road, Thousand Oaks California 91320 United States of America: Sage Publications,
Inc. https://doi.org/10.4135/9781412963947.

Moynihan, Donald P., and Carol L. Silva. 2008. “The Administrators of Democracy: A Research Note
on Local Election Officials.” Public Administration Review 68 (5): 816–27. https://doi.org/10.1111/j.
1540-6210.2008.00923.x.

Overton, W. Scott, and Stephen V. Stehman. 1995. “The Horvitz-Thompson Theorem as a Unifying
Perspective for Probability Sampling: With Examples from Natural Resource Sampling.” The American
Statistician 49 (3): 261–68. https://doi.org/10.2307/2684196.

“Sampling Techniques.” n.d. Food and Agriculture Organization of the United Nations. Accessed October 17,
2019. http://www.fao.org/3/X6831E/X6831E12.htm.

Sen, A. R. 1953. “On the Estimate of the Variance in Sampling with Varying Probabilities.” Journal of the
Indian Society of Agricultural Statistics 5: 119–27.

Stehman, Stephen V., and W. Scott Overton. 1994. “Comparison of Variance Estimators of the Horvitz-
Thompson Estimator for Randomized Variable Probability Systematic Sampling.” Journal of the American
Statistical Association 89 (425): 30–43. https://doi.org/10.2307/2291198.

Sunter, A. B. 1977. “List Sequential Sampling with Equal or Unequal Probabilities Without Replacement.”
Applied Statistics 26 (3): 261. https://doi.org/10.2307/2346966.

“Survey of Local Election Officials.” 2019. Early Voting Information Center. 2019. https://blogs.reed.edu/
earlyvoting/leo-survey/.

Tillé, Yves. 2010. “TEACHING SURVEY SAMPLING WITH THE ‘SAMPLING’ R PACKAGE.”

———. 2016. “Sampling: Survey Sampling R Package Version 2.8.”

Yates, F., and P. M. Grundy. 1953. “Selection Without Replacement from Within Strata with Probability
Proportional to Size.” Journal of the Royal Statistical Society, Methodological, 15 (2): 253–61. https:
//www.jstor.org/stable/2983772.

28

https://doi.org/10.1080/03610910701419695
https://doi.org/10.1080/03610910701419695
https://doi.org/10.4135/9781412963947
https://doi.org/10.1111/j.1540-6210.2008.00923.x
https://doi.org/10.1111/j.1540-6210.2008.00923.x
https://doi.org/10.2307/2684196
http://www.fao.org/3/X6831E/X6831E12.htm
https://doi.org/10.2307/2291198
https://doi.org/10.2307/2346966
https://blogs.reed.edu/earlyvoting/leo-survey/
https://blogs.reed.edu/earlyvoting/leo-survey/
https://www.jstor.org/stable/2983772
https://www.jstor.org/stable/2983772

	Abstract
	Introduction
	Identifying the Universe of Election Jurisdictions and Local Election Officials
	Limitations of the Sampling Methods Used In Previous Surveys
	Unequal probability sampling
	Use cases
	Inclusion probabilities
	Methods for analyzing an unequal-probability sample
	PPS compared to other methods

	Comparing PPS sampling methods
	Minimal support sampling
	Random Systematic Sampling
	Simulations

	The Impact of Survey Weights On Our Survey Results
	Conclusion and Futher Research
	Appendix
	Extra plots
	Calculation of inclusion probabilities
	Linear method
	Sequential method
	Comparison of two methods


	References

