Opportunities for Direct Readout

Opportunities for Direct Readout

ÇН₃

R

- HN

4

`NH

Н

The Zinc Finger

30 residue structural unit readily identified by sequence pattern: $Cysx_{2-5}Cysx_{12-15}Hisx_{3-5}His$

Single protein may contain many zinc finger **domains**

Metal Binding Necessary, but not Sufficient for Folding

Cons. Peptide 1	P	¥	K	C	Ρ	Е	C	G	K	S	F	S	Q	K	S	D	L	v	K	H	Q	R	т	H	т	G
Min Zn Finger	к	Y	A	C	A	A	C	A	A	A	F	A	A	K	A	A	L	A	A	H	A	A	A	H	A	K
MZF-Coreless	ĸ	A	A	C	A	A	C	A	A	A	A	A	A	K	A	A	A	A	A	H	A	A	A	H	A	K

MZF retain native conformation.

Coreless fails to adopt stable fold.

Berg (1992) PNAS 89, 4796

Zinc Finger - DNA Complex

Resolution (Å)	2.74	
Measured reflections	43976	
Unique reflections	12537	
Data coverage (last shell)	92	
R _{merge} ¹ (%)	5.90	
R-factor ³	0.224	
free R-factor (10%)	0.319	
	DNA	protein
R.m.s. in bond length:	s (Å): 0.014	0.019
R.m.s. in bond angles	(degrees): 1.947	2.030

Kim & Berg (1996) Nat. Struct. Biol. 3, 940

Recipe for Recognition?

Pabo (1999) Ann Rev Biochem Biophys

Mix and Match Fingers

	Protein			DNA		
Finger 1	Finger 2	Finger 3	Triplet 1	Triplet 2	Triplet 3	K _d (μΜ)
RER	RER	RER	GCG	GCG	GCG	11*
RER	RER	RER	GGG	GCG	GGG	nd
QDR	RER	RHR	GCT	GCG	GGG	.002*
QDR	RER	RHR	GGG	GCG	GGG	.015
QDR	RER	RHR	GCG	GCG	GCG	1.0
RER	QDR	RHR	GCG	GCT	GGG	0.010*
RER	QDR	RHR	GCT	GCG	GGG	0.066
QDR	RER	RHR	GCG	GCT	GGG	0.55
QDR	RER	RHR	GCT	GCG	GGG	0.003*

*=cognate: RER/GCG, QDR/GCT, RHR/GGG

Phage Display Courtesy of New England Biolabs

https://www.neb.com/products/ e8120-phd-c7c-phage-display-peptide-library-kit

Zinc Finger Nucleases

An Illustrated Glossary of Terms

The HTH Motif

434 QAELAQKV<u>GTTQ</u>QSIEQLENGKKR 4 89 15

The HTH-motif is traditionally defined as a 20-amino-acid segment of two almost perpendicular a helices connected by a four residue β turn.

The HTH-motif is traditionally defined as a 20-amino-acid segment of two almost perpendicular a helices connected by a four residue b turn.

The 434 Repressor-Operator Complex

Direct Readout of Major Groove

Indirect Readout of Minor Groove?

24° bend arises from minor groove Compression

Indirect Readout of DNA Conformation

FIG. 4. Circular dichroism spectra of 2 mm of DNAs bearing modified bases at their central positions. Spectra were acquired at 50 mm KCl, 25 °C (see also "Experimental Procedures"). The spectra of T7·A8 (\bullet) and T7·DAP8 (\blacksquare) are shown in *A*. *B* displays the spectra of I7·C8 (\bullet) and G7·C8 (\blacksquare).

Mauro et al. (2003) J. Biol. Chem. 278, 12995

TrpR Binds Tryptophan and Blocks mRNA Synthesis by Binding DNA

Trp Repressor Bound to Operator

Tryptophan is an Allosteric Effector

In the presence of bound tryptophan, Arg84 H-bonds to α -carboxylate of the co-repressor

Tryptophan is an Allosteric Effector

Without tryptophan co-repressor, Arg84 reaches to Hbond with carbonyls at C-term of Helix B of 2nd subunit

Tryptophan Binding Site

