X. SOME NOTES ON X-RAY
CRYSTALLOGRAPHY

No technique has provided more information or more detailed information on biochemical
structure than x-ray crystallography. At the moment there are 100,000 structures on file with the
Protein Data Bank (PDB), roughly 85% having been solved by crystallography. However, the
quality of those structures varies significantly. As with any experimental result, crystallographic data
can vary in quality, and as with any human practice, so can the analysis. The goal of these notes is to

provide you with some simple tools to be used in evaluating the quality of the structures obtaining
from the PDB.

Crystals
Growth

The first, and sometimes most frustrating, step in x-ray crystallography is in obtaining crystals of the
molecule of interest. However difficult this is for small organic compounds, it’s worse for proteins,
which are large, irregularly shaped, and often conformationally labile. Protein crystal growth is
typically performed by vapor diffusion. A drop (on the nano- to microliter scale) of concentrated
solution of the protein (> 10 mg/mL) is mixed with a solution containing a precipitant (typically a
salt, organic solvent, or soluble wax) and then sealed into a chamber containing a larger volume of
that precipitant solution “in the well” (Figure X.1). Since the precipitant is at a higher concentration
in the well, there will be vapor diffusion between the well and the drop until the concentration of
the precipitant in the drop is as high as in the well. This slow approach to a high concentration will,
in ideal circumstances, promote growth of the crystal — to dimensions as large as 1 mm (not so big).

Mixture of well soln. Concentrates slowly
& gonc. protein solution Through diffusion

Precipitant in well soln.

Figure X.1. Vapor diffusion method for protein crystallization As the mixture of
protein and precipitant concentrate, crystals may form.

Note that the conditions required to create protein crystals (high salt or organic solvent, sometimes
extremes of pH) are not necessarily similar to the physiological origins of the protein. In addition, a
protein in the crystalline state is not quite the same thing as a protein in the soluble state.
Nevertheless, it’s worth noting that protein crystals are very different than salt crystals. Sometimes
as much as 80% of the volume of the crystal is solvent, with the protein acting as a sort of ordered
network through which the bulk solvent flows (see Figure X.2). Texturally, the protein crystal is
more like a gel than a rock — easy to squish, and not prone to sharp cracks.
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Figure X.2. (A) A cross-section of a protein crystal showing the tops of eight unit
cells. Each is related to each other by simple translation along the x or y axes. (B)
Each unit cell contains four identical objects related to each other by a four-fold
rotation axis perpendicular to the page. The contents of one-quarter of the unit cell
is, in this instance, the asymmetric unit.

Crystals are ordered assemblies of matter. That order is reflected in their composition. The least
reducible unit of the crystal as the unit cell — that block of matter that can be used to recreate the
entire crystal by translation along the x, y and z axes Figure X.2A). It is somewhat similar to a
collection of shoe boxes stacked vertically and horizontally to fill a room. In an average protein
crystal there are often 10" individual unit cells. The unit cell must be a parallelopiped (a prism
having three pairs of parallel faces, each of which is a parallelogram, whose dimensions are defined
by the cell axis lengths a, b and ¢, and whose faces ate set off by angles of a,  and y (the angle a
denotes the angle between the b and ¢ axes, 3 is between a and ¢, and y is between a and b.) The
most symmetric parallelopiped is a cube, in which all cell axes are the same length (a = b = ¢) and all
cell angles are 90°. Such unit cells are called “cubic.” The least symmetric units cells are “triclinic”
having cell edges of differing lengths and differing cell angles, none being 90°. The differing classes
of unit cells are listed in Table X.1.

The goal of the crystallographic experiment is to determine the position of every atom (or every
non-hydrogen atom generally) inside the unit cell. Small unit cells may contain one protein chain
and have unit cell edges of 20 A. Large unit cells may contain several dozen protein chains and have
cell edges above 400 A. Clearly, the crystallographic problem grows with the size of the unit cell,
since that (in part) determines how many atoms will need to be located.

However, it isn’t always necessary to build up the entire unit cell, atom by atom. Often, unit cells
contain internal symmetry that allows for a simplified problem. While the crystal is built by stacking
up unit cells in three dimensions, the unit cell can also be built up from simpler sections, using
symmetry properties internal to the unit cell. The classes of unit cells listed in Table X.1 list the
minimal symmetry elements that are available within them. Triclinic crystals are the least promising,
since there is no internal symmetry at all. However, an orthorhombic crystal, with three different
cell edges but all angles of 90°, has considerable internal symmetry. Think of a typical shoebox, and
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you have a picture of the orthorhombic crystal. Looking at any of the faces straight on, you can
rotate the unit cell by 180°, flipping it over, and get back the same shape. Those 180° turns occur
along “two-fold” axes that relate two halves of the box (or unit cell) to each other. That external
appearance means that the two halves of the box contain identical arrangements of atoms. Because
all three faces have two-fold symmetry, the unit cell is comprised of four symmetry related sections
— the asymmetric units (see Figure X.1B).

Since the contents of the asymmetric unit are reproduced in other parts of the unit cell by simple,
known symmetry operations, it isn’t necessary to solve the position of every atom in the unit cell
individually. Instead, one can solve the position of every atom in the asymmetric unit, and then use
symmetry to reconstruct the full unit cell. In the cases of orthorhombic and higher symmetry unit
cells, this is a real advantage and can dramatically reduce the time required for structure solution.

Table X.1. Classes of units cells frequently observed in biochemical crystals.

Class Rules for edges Minimal Internal Asymmetric
and angles Symmetry Units per Unit
Cell

Triclinic aZb*c none one
a#pFyF90°

Monoclinic aZb*c 1 two-fold two
oFyF90°
B =90°

Orthorhombic atb#c 3 two-folds four
a=b=y =90°

Tetragonal a=b#*c 1 four-fold & four or
a=b=y =90° maybe 2 two-folds eight

Trigonal a=b#*c 1 three-fold & three or
a=b=090° maybe 1 two-fold six
y =120°

Hexagonal a=b#*c 1 six-fold & six or
o=b=90° maybe 2 two-folds twelve
y =120°

Cubic a=b=c symmetry all over twelve to

the place

forty eight



X-Rays and Diffraction

X-ray diffraction is a misnomer — it’s really x-ray scattering. X-rays scatter in three dimensions from
electrons. If you shine an x-ray beam on any random chunk of matter, you’ll see a fog of scattered
x-rays on a detector set up on the opposite side of the sample. On the other hand, if you shine x-
rays on a crystalline sample, the order of the sample leads to patterns of constructive and destructive
interference and one obtains a “diffraction pattern” of discrete spots kind of like light reflected off
of a disco ball. While the mathematical reasons for the appearance of the diffraction pattern are too
involved for this presentation, there is a simplified model that is predictive of the pattern. Each spot
is treated as a reflection that emanates from x-rays that are deflected off of parallel planes of atoms
within the crystal. This is the Bragg model for x-ray diffraction.

Bragg’s Law — A Simple Approach to Understanding X-Ray Diffraction

Diffraction is a common laboratory phenomenon. UV/Vis spectrophotometers use diffraction
gratings to select particular wavelengths of light for illumination of a sample. Diffraction gratings
are closely spaced mirrored surfaces that reflect light of varying wavelengths at varying angles (think
of holding a compact disk up to a light at an angle). In most x-ray diffraction experiments a single
wavelength is selected (typically between about 0.7 to 2.0 A). Thus “monochromatic” x-rays will
only successfully reflect at a given angle if the “mirrors” are spaced at an appropriate distance.
Based on the wavelengths of x-rays, these distances turn out to be appropriate for the dimensions of
the unit cell in the crystal.

A B.

Figure X.3. (A) Constructive and (B) destructive interference from planes of atoms
separated by a distance “d”. (Stolen from our friends at Wikipedia.)

Imagine a simple crystal with one unit cell dimension of d and atoms at the corners of the unit cell.
Atoms will lie along planes that are separated by that distance d, and you can imagine x-rays
reflecting from those planes (Figure X.3). If x-rays are directed at that set of planes with an incident
angle of 0, they will reflect off at an angle of 0 as well. However, not every angle will lead to the
observation of reflected x-rays. Because of the possibility of destructive interference between x-rays
reflecting off the parallel planes in differing phases, it’s important that the difference in path length
between each reflected x-ray be an integral number of wavelengths. Some simple trigonometry can
be used to show that the following relationship can be used to predict the successful angle of
diffraction:



hA = 2dsin0

In this equation, h is an integer and d is the spacing between planes. This is Bragg’s Law (Figure
X.3).

A, B. ™ 0"

Figure X.4. (A) Bragg diffraction. X-rays diffract from parallel planes at incoming
and exiting angles of 0. The path difference, 2x, must be an integral number of
wavelengths. (B) Higher resolution diffraction, the dashed blue lines are diffracting
from planes separated by d/3 at a sharper angle.

Another way to think of h is as a divisor of d. Bragg’s law will hold for x-rays diffracting off
electrons that fall on imaginary planes that divide up the unit cell into n slices (Figure X.4).! The
newly written equation states that A = 2(d/h)sin@. “d/h” is the resolution of diffraction, usually
measured in units of A. By increasing h we divide up the unit cell into ever smaller sections and
sample the electron density within the unit cell ever more finely. This is like looking at an elephant
through a fence of wood slats, where there are narrow gaps between the slats. If the slats are 10 ft
wide (low resolution), you’ll get some rough sense of how big the elephantis. At 1 ft. wide (medium
resolution), the slats are coming often enough to get a rough shape. If the slats are about 2 inches
wide (high resolution), you really can pretty much see everything you need to see of the elephant. So
it is with crystals. The most important factor used to describe the quality of a crystallographic model
is its resolution. The lower the number (the current macromolecular record is 0.6 A) the more detail
you see. Typically, we describe resolution in qualitative terms as well as numerical terms (and these
are somewhat arbitrary): Low resolution is data taken at 3 A and above, moderate resolution goes
from2—3 A, high resolution is between 1-2 A and atomic level resolution is below 1 A. Instead
of an elephant, we’re looking at the distribution of electron density in the crystal. At any point lower
than 3 A resolution its possible to make a good estimate of the shape of the molecule, but with
increasing resolution comes increasing confidence.

I'In all honesty, this a pretty sketchy way of thinking of diffraction, but it works fine as qualitative explanation. There
are plenty of great books that will give a quantitative view that is much more comprehensive but more difficult to

comprehend.



Figure X.3 Shows the electron density around the same portion of a molecule
solved to three differing levels of resolution. This image was taken from Bernhard
Rupp’s page at http://www-structure.llnl.gov/Xray/10lindex.html. Note that the
electron density becomes more precise and more specific at higher resolution (lower

d/h spacing).

Difficulties

Ideally, all crystal structures should be solved to the highest possible resolution. The best resolution
achieved for a protein structure, to date, is about 0.6 A At that level of sharpness, one can see
individual atoms as balls of electron density, and even hydrogen atoms are visible. Sadly, it is often
the case that we don’t get diffraction even nearly that far. The biggest problem is order with in the
crystals. Since diffraction requires the ordered arrangement of 10" unit cells in a crystal and ordered
molecules within each unit cell, high resolution diffraction requires an extremely well ordered crystal.
Protein crystals are often not well-ordered. Where small molecule crystals are often solid samples of
a given compound, protein crystals are really more of a gel, where protein molecules stack loosely
and are surrounded by as much as 80% solvent. At the very least surface residues have more
disordered side chains than do core residues, which are usually tightly packed. But there may be



variability in how the loosely packed proteins contact each other, and, at an even larger scale, the
crystal is itself a “mosaic” collection of many smaller crystals, which may be more or less ordered
with respect to itself. A crystal that has sufficient order to diffract to 1 A is a rare and beautiful
thing. More commonly, one finds oneself battling to get diffraction below 2 A, and sometimes
you’re grateful for 3 A resolution. Targe molecules and assemblies of molecules, like the ribosome
and viruses present classic problems in obtaining high resolution data.

Measurement

As a practical matter, good data depends on good data collection. The crystal is mounted in an
intense x-ray beam of a single wavelength, and data collection may last from 1-48 hours depending
on the source of the x-rays, the detector, and the quality of the crystal(s). Frequently the crystal is
flash frozen at liquid nitrogen temperatures (100 K) to permit extended data collection or stability in
the particularly intense beams available at synchrotron beam lines. The most common detectors
currently are CCD devices (like in digital cameras, but huge numbers of megapixels) and imaging
plates (like in phosphorimagers). A typical experiment requires many images be taken, so that the
crystal is viewed across a range of angles. The more symmetry in the crystal, the fewer degrees of
rotation are required. In the best case, one only needs to rotate about 22.5°, but in the worst case
180° of rotation are required. Figure X.5 shows a typical diffraction image, collected at a
synchrotron, of a moderately decent crystal.

Figure X.5 Diffraction image from a protein crystal taken from
http:/ /userpage.chemie.fu-betlin.de/~psf/ifv_psfx.htm. The concentric rings
note the resolution at that angle of diffraction. The inner most ring reads 10.2 A
while the outermost ring is at about 2 A. Note that the spots are weaker at the
edges, demonstrating the difficulty of obtaining good quality, high resolution data.

Diffraction and the Fourier Transform — Calculating Electron Density

Consider a 1-dimensional crystal, in which atoms are placed at an even spacing along a line —
essentially at the ends of 1-D unit cells (Figure X.6). When x-rays diffract from this crystal, they will
do so at angle prescribed by Bragg’s Law. The diffraction pattern registered at a detector will have
spots registered at increasing distance from the origin — that is, the point on the detector that would



be struck by the original, direct x-ray beam. Each reflection is numbered (“indexed”) according to
its distance from the origin using the variable “h”.

1-dimensional
crystal

AN
~

h=2
h=1
Incident x-ray beam / o
> h = 0 (origin)
\ h=-1
h=-2

Figure X.6. Diffraction from a 1-D crystal yields a diffraction pattern in 1-D. The
reflections are indexed by the value of h (related to the integer values in Bragg’s
Law).

The structure of the crystal and the diffraction pattern are related to each other by the Fourier
transform. Each can be used to calculate the other. The diffraction pattern is constructed of the
scattered x-rays. Each can be described using a structure factor, I, which has properties of
amplitude (|F, |), phase (&) and frequency (h) — like a wave. The structure factor for each reflection

can be calculated directly from the distribution of electron density, p(x), in the unit cell as shown
below. Note that electron density in a crystal is a continuous function, so we integrate.?

1
F, = f p(x)'exp[Znihx]'dx
0

Similarly, the electron density can be calculated from the structure factors as follows. Note that the
diffraction pattern is a non-continuous function with indexed components, so we sum.

p(x) = Y F, - exp[-2mihx]

2 A curious person might wonder about the “exp[2mihx]” term. This is a computationally easier way of expressing the
cosine function. Note that e(ip) = cos(¢) + isin(§). In typical Fourier transform calculations, only the real component

of this expression is needed



X-ray crystallography proceeds by measuring the structure factors (the diffraction pattern) and using
it to calculate electron density. If we know all the parameters of the diffracted x-rays, we can
recalculate the positions of the atoms in a crystal, such as the slightly more complex 1-D crystal in
Figure X.7. Note that the more reflections that you can measure, the more accurate the calculation
of the positions of the atoms (though they can never be known with perfect precision).
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Figure X.7. Illustration of the Fourier transform. On the left we use the first five
reflections (lowest resolution) to calculate the distribution of electron density in a 1-
D crystal (two unit cells are shown, each has 3 atoms). On the right, we use 10 terms
to obtain a higher resolution picture of the crystal. Note that the small ripples are
not real and reflect an imperfection in the calculation that is inherent to the Fourier
transform.

Thus, to determine the structure of a molecule, you need two pieces of information from each
indexed “reflection” that is measured during the diffraction pattern: the amplitude and the phase.
The amplitude is related to the intensity of the x-ray striking the detector (the darker the spot, the
higher the amplitude), but the phase cannot be measured. (The phase corresponds to the point in
the wave’s cycle at which the x-ray strikes the detector. Does it strike at a peak, a valley or
somewhere in between?) Unfortunately, there is no way to measure that directly during data
collection. As a result, some fairly tricky and subtle methods have been introduced to allow
crystallographers a guess (sometimes a good guess) at the phases.

Obtaining the Phases

Phase determination is the greatest hurdle in most crystallographic experiments. The methods used
require some complex geometric arguments to explain, so we’ll leave those alone Instead, it should
be sufficient to note that all of the methods listed in Table X.2 provide experimental phase
information. Sometimes the initial determinations are quite good, such as when the protein has
previously been crystallized under very similar conditions, and sometimes they are quite poor. The
challenge is to overcome the latter situation and to obtain a reasonable structure despite limitations
of the starting phases.



Table X.2 Some ways in which initial phases can be estimated.

Method

Multiple
Isomorphous
Replacement (MIR)

Multiple Anomalous
Dispersion (MAD)

Molecular
Replacement (MR)

Molecular Difference

Description

Requires a derivative of the native protein with a heavy atom (like mercury
or iodine) which scatters x-rays more strongly than other atoms in the
molecule. By finding the positions of those atoms, one can make some
good approximations of the phases for all reflections.

Requires substitution with an atom that scatters x-rays asymmetrically at a
particular wavelength. Selenium, incorporated as selenomethionine, is very
popular these days. The method requires tunable x-rays, typically obtained
at synchrotrons.

Requires that you have a model of a similar protein that can act as a first
guess for the structure of your protein. You can make an initial estimate of
the phases based on phases predicted for the model.

This is the easiest way to guess at phases. If the protein has already been
crystallized under similar conditions and it crystallizes similarly (same unit
cell, etc.) then chances are the phases for the new structure are similar to
those of the old structure.
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Structure Determination

Data Quality

Before attempting to solve the structure of a macromolecule by crystallography, one should
have confidence in the data being used. Table X.3 describes several measures that are routinely used
to report on the quality of data being used in an experiment.

Table X.3. Descriptors of data quality employed in crystallography.

Parameter

Resolution

1/0(I)

Completeness

Redundancy

sym

The Model

Description

This typically describes the extent of the data from low to high resolution that
is being used. The higher the resolution, the better, but that is often outside
the control of the experimenter. Usually a high resolution range will be given in
parentheses. These are the weakest data and must be especially defended by the experimenter.

Intensity vs. the standard deviation in intensity, or more simply, signal to noise.
The higher this value the more reliable the experimental data. Typically the signal
to noise ratio is given for the high resolution shell. It should normally be about 2.0 or better.
Lower values indicate that the experimenter is using very weak data to mafke their resolution
look better than it is.

Within any resolution range, there are a defined number of data points
available. Ideally, 100% of them will be measured, but anything over 90% is
acceptable. In the high range, it is common to see lower completeness. Recognize that
incomplete data collection has a negative impact on structure solution, but it is better to
include all the data you have, so incomplete high resolution data is acceptable.

How many times was each reflection (data point) measured? As in any
experiment, the more measurements the better. A redundancy of 3 is typically
considered OK. Higher is better. Sometimes the experimenter will report
total and unique reflections. The ratio of those two gives the redundancy.

Or sometimes, R, This measures the residual (R) between multiple
measurements of the same reflection. It is the fractional or percent
disagreement on average throughout the data set. It should be 10% or less,

though in the high resolution shell it may be up to 50%.

The desired outcome of any crystallographic experiment is a model for the molecule of interest.
The most obvious attribute of that model is the positions of the atoms within the molecules — the x,
y and z coordinates. Crystallography also requires assignment of a fourth parameter for each atom —
the so-called “B factor”. Ideally, this is a measure of the thermal motion experienced by an atom in
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the molecule, hence its alternate names, the “temperature factor” or “thermal parameter.”® In fact,
it describes all of the different things that contribute to varying position for an atom — rotation
around bonds, disorder from unit cell to unit cell, and honest thermal motion. Typically, atoms on
the surface experience a greater degree of positional disorder and will have larger B factors. Most
models include B-factors that range from about 10-200. Assuming that the atom moves within a
spherical region about a central point (not always a good assumption), then the radius of that motion
can be calculated as:

radius of motion = VB/8x>

For an atom with a B factor of 25 (pretty typical), the radius of motion is about 0.6 A. This is
obviously an important issue to consider when thinking about where atoms in a molecule reside.
Big B-factors mean that they move around a lot within the crystal.

Model Building

Once a good data set is in place and phases are available, the electron density map is calculated. The
protein sequence for a crystallized molecule is typically available, so the bonded structure of the
protein is known — only the conformation is absent. Model building proceeds by placing residues, in
correct sequence, into the electron density as appears appropriate. At high resolution, this can be
straightforward and is often automated. At low resolution, it can be quite difficult to distinguish
which residue goes into which ill-formed blob of electron density. Methionines and large aromatic
residues are usually somewhat unique looking and typically provide toe-holds for model building. It
is important to note that the software typically employed for model building restricts the experiment
in only allowing residues with appropriate bond lengths and angles. The dihedrals, which define
conformation, are allowed to vary — though in some instances there are restrictions on those as well
to avoid steric conflicts that might arise during the construction of the model.

Refinement

The first attempt to build a model often yields an incomplete structure with poor fit to the electron
density. Automated methods exist to modify the conformation of the model so that it better fits the
electron density. This is the process known as refinement. The quality of the model is decided on
two counts: (1) its agreement with the intensity data taken from the x-ray experiment and (2) its
stereochemical reasonableness — that is, does it look like a real molecule, with normal bond lengths,
angles, etc.

In judging the agreement with the data, the R-factor (often abbreviated R, ot R,,) is measured.
This value compares the measured amplitudes of the diffracted x-rays (given the abbreviation F )
and compares them to amplitudes that are predicted from the current model (F
X.1).

; see equation

calc>

3 Another name is the Debye-Waller factor, which is more commonly used in other spectroscopic techniques.

12



I3

Ol

bs| - |Fc

|F0bs|

alc |

X 2
oSy

The better the agreement between F, and F_,,
refinement techniques, to see R-factors below 0.15 or 15%. Oftentimes you will see a separate
measure of quality reported, called Rg,.. Rg,. is calculated in an identical fashion to R, except that
a small subset of the total data (5-10%) is set aside and not used in refinement. If refinement is
doing a good job, the R, should sink along with R, .. However, it is possible to play games to try
to optimize R, without really doing a better job of modehng the protein. Ry, tends to reveal that
sort of tawdry behavior and makes a negative example of your cheating ways.*

(Eq. X.1)

the lower the R-factor. It is rare, even with modern

free

free

The stereochemical quality of the model is easier to evaluate. Are the backbone dihedrals found in
“allowed” regions of Ramachandran space? Are the deviations between the bond distances in your
model and “ideal” bond distances small (< 0.02 A) and so are the bond angles (< 2°). If so, then
your protein looks like what we expect a protein to look like, and all is good. It should be
recognized, however, that there is almost always a tension between fit of the crystallographic data
and stereochemical parameters. At lower resolution, one frequently accepts the dictates of
stereochemistry, because the electron density just can’t be used to any precision. On the other hand,
at atomic level resolution, it is possible to allow stereochemical concerns go. The data is of such

good quality that it should be able to give a good looking model with no coaching from some table
of what molecules “should” look like.

A Cauntionary Note

So you have a model prepared from crystallographic data. The data was high resolution, the R-
factor is low (as is Rg.) and the model agrees with stereochemical conventions. It still may be
bogus. Crystallography depends upon taking a soluble (or membrane-bound) protein and placing it
into a dense, arrayed state using a variety of precipitants, including salts, organic solvents, and
polymers. The pH may be far from physiologically relevant, and low temperature data collection
may freeze out a portion of the structure that is normally quite flexible. Crystal contacts may block
active sites and distort the surface of the molecule. How do you know if what you’re seeing is real?
Simple — the model is a guide for experiments. It is not an end unto itself, but rather a tool to be
used in describing and predicting the behavior of the protein. Frequently, crystallized protein retain
activity even in the crystal and can be seen to adopt structures wholly consistent with biochemical
experiments. In fact, that is the rule rather than the exception. Nevertheless, always use a model
with some skepticism. These structures are the product of human endeavor and are subject to all
the errors that come with it. But even so, they provide some of the most compelling evidence for
the means by which proteins achieve their unusually fine-tuned properties.

* A great description of these games and their failings has been published by Alwyn Jones and Gerard Kleywegt (1995)
Structure 3, 535.
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