Chem 391: Goals for the Semester

Goals for the semester:

- 1. Tools to **measure** structure (spectroscopy) note that biophysics explains tools, I will simply tell what they measure
- 2. Organizing principles to **describe** structure Just like words for different colors can help organize visual world
- Tools to measure function Binding can be measured by K_{eq}, catalysis measured by k_{cat}
- 4. Organizing principles to link function to structure: **thermodynamics** I desperately want all to think about contributions of ΔH and ΔS to spontaneity.

Covalent Bonding

C-C	83 kcal/mol	1.54 Å
C=C	147 kcal/mol	1.34 Å
C-O	86 kcal/mol	1.43 Å
C=O	127 kcal/mol	1.20 Å
C-H	99 kcal/mol	1.09 Å
O-H	111 kcal/mol	0.96 Å
N≡N	227 kcal/mol	1.10 Å

Some Intermolecular Contacts

Molecular dimer	$\Delta \mathbf{H}_{ ext{interaction}}$ (^{kcal} /mol)	distance (Å)
CH ₄ •CH ₄	0.3	3.5
SiH ₄ •SiH ₄	0.6	4.2
$H_2O\bullet CH_4$	0.9	3.5
HCI•HCI	1.2	3.8
HF•HF	2.9	2.7
$H_2O \bullet H_2O$	3.2	2.8

Gallery of IMFs

http://itl.chem.ufl.edu/2045/lectures/lec_g.html

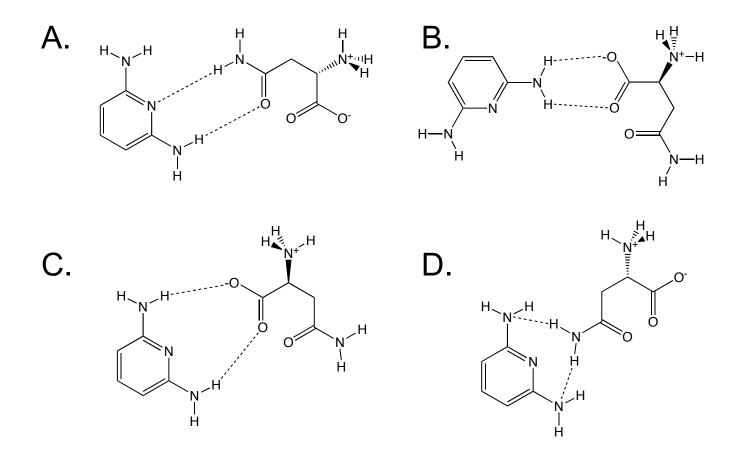
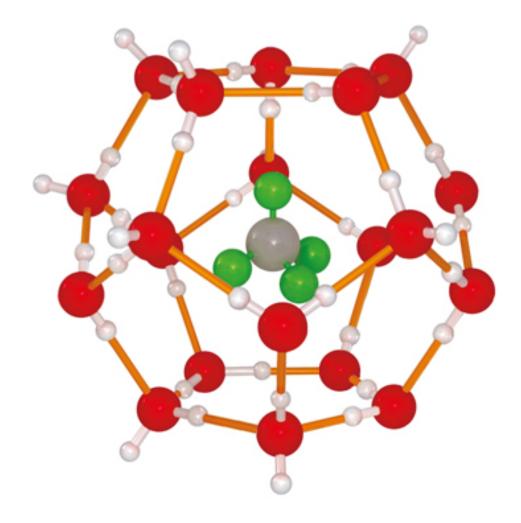

Does an H-bond Matter in Water?

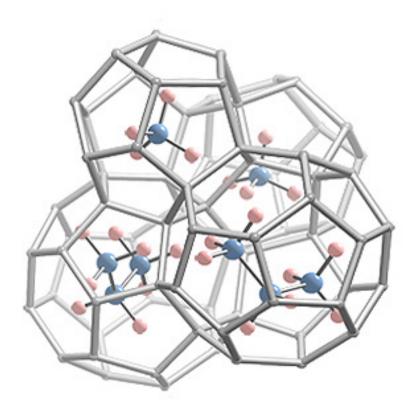
TABLE I

Thermodynamics of Interamide Hydrogen Bond Formation by N-Methylacetamide at 25°

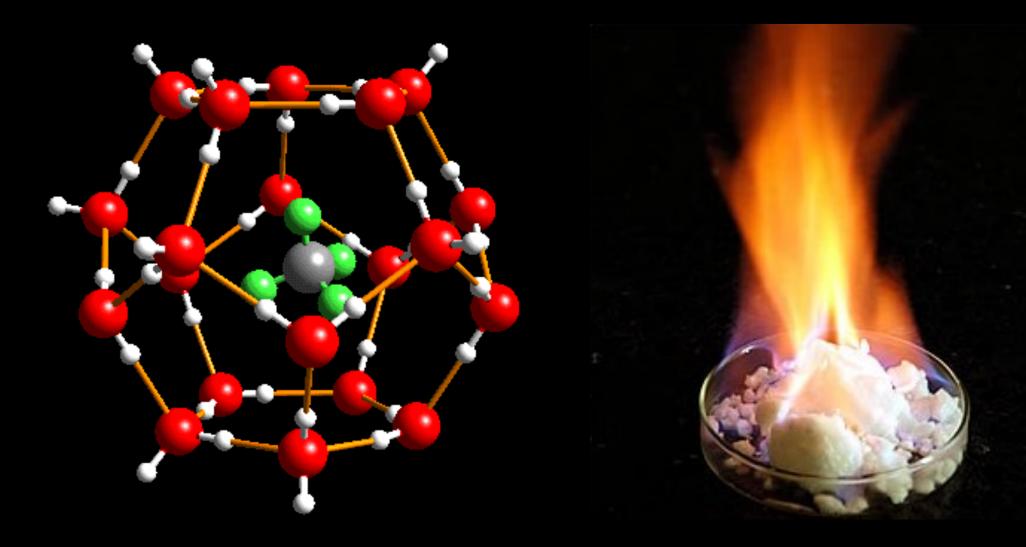
Solvent	Association constant for dimerization, k ₂	∆F°, kcal. mole ~1	∆H°, kcal. mole ^{−1}	∆S°, gibbs mole ⁻¹
Carbon				
tetrachloride	4.7(5.8)	-0.92	-4.2	-11
Dioxane	0.52(0.58)	0.39	-0.8	- 4
Water	0.005(0.005)	3.1	0.0	-10

Which of these H-bonding Schemes is Satisfactory?




E. All of the above

Transfer of Methane from CCl₄ to H₂O


Transfer	∆G° (^{kcal} / _{mol})	∆H° (^{kcal} / _{mol})	∆S° (^{cal} / _{mol•K})
$CH_{4(g)} \rightarrow CH_{4(H2O)}$	+6.3	-3.2	-32
$CH_{4(g)} \rightarrow CH_{4(CCI4)}$	+3.5	-0.5	-14
$CH_{4(CCI4)} \rightarrow CH_{4(H2O)}$	+2.8	-2.7	-18

Clathrates

Methane Clathrate

