A Quick Note on Rate/pH profiles.
In Das \& Piccirilli, they plot the $\log _{10}$ of rates/rate constants vs. pH . This makes the interpretation of pK_{a} easy if you know what you are looking for. Consider a deprotonation to create the active site general base. The fraction of the enzyme that has been deprotonated to create the general base B is:

$$
\begin{aligned}
& \frac{[\mathrm{B}]}{[\mathrm{Enz}]}=\frac{[\mathrm{B}]}{[\mathrm{B}]+[\mathrm{HB}]}=\frac{[\mathrm{HB}] \mathrm{K}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]}{[\mathrm{HB}]+[\mathrm{HB}] \mathrm{K}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]} \\
& \frac{[\mathrm{B}]}{[\mathrm{Enz}]}=\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}}}
\end{aligned}
$$

Thus means that you can have two simplified situations.
(a) When pH is must lower than $\mathrm{pK}_{\mathrm{a}}\left(\left[\mathrm{H}^{+}\right] \gg \mathrm{K}_{\mathrm{a}}\right)$ one has the following:

$$
\begin{aligned}
& \frac{[\mathrm{B}]}{[\mathrm{Enz}]}=\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}}} \approx \frac{\mathrm{~K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]} \\
& \log _{10}\left(\frac{[\mathrm{~B}]}{[\mathrm{Enz}]}\right)=\log _{10} \mathrm{~K}_{\mathrm{a}}-\log _{10}\left[\mathrm{H}^{+}\right] \\
& \log _{10}\left(\frac{[\mathrm{~B}]}{[\mathrm{Enz}]}\right)=\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}
\end{aligned}
$$

When you plot $\log _{10}$ of the activity (which is proportional to $[B] /[E n z]$) vs. pH you get a line whose slope is 1 (remember pH is the x variable).
(b) When pH is much greater than $\mathrm{pK}_{\mathrm{a}}\left(\left[\mathrm{H}^{+}\right] \ll \mathrm{K}_{\mathrm{a}}\right)$ then the following happens.

$$
\begin{aligned}
& \frac{[\mathrm{B}]}{[\mathrm{Enz}]}=\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}}} \approx \frac{\mathrm{~K}_{\mathrm{a}}}{\mathrm{~K}_{\mathrm{a}}}=1 \\
& \log _{10}\left(\frac{[\mathrm{~B}]}{[\mathrm{Enz}]}\right)=0
\end{aligned}
$$

What really matters here is that $[B] /[E n z]$ reactions a constant value so that you get a horizontal line (slope of 0) at this point.

Thus a plot of $\log _{10}$ (activity) vs. pH will yield two straight lines when pH is either much lower or much higher than pK_{2}. Those lines will intersect at the point where $\mathbf{p H}=\mathrm{pK}_{\mathrm{a}}$ (though the data in that region don't conveniently fall on either line).

See back for example.

Here is the plot of activity vs. pH . Note that the inflection points can be used to ID the pK_{a} 's of the general base (4.7) and the general acid (10.0).

Here is the plot of \log activity vs. pH . Note that one can draw straight lines at the three linear portions of the plot, and where they intersect gives pK_{a} 's of the general base (4.7) and the general acid (10.0)

