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X.  SOME NOTES ON X-RAY 
CRYSTALLOGRAPHY 

No technique has provided more information or more detailed information on biochemical 
structure than x-ray crystallography.  At the moment there are 100,000 structures on file with the 
Protein Data Bank (PDB), roughly 85% having been solved by crystallography.  However, the 
quality of those structures varies significantly.  As with any experimental result, crystallographic data 
can vary in quality, and as with any human practice, so can the analysis.  The goal of these notes is to 
provide you with some simple tools to be used in evaluating the quality of the structures obtaining 
from the PDB. 

Crystals 

Growth 

The first, and sometimes most frustrating, step in x-ray crystallography is in obtaining crystals of the 
molecule of interest.  However difficult this is for small organic compounds, it’s worse for proteins, 
which are large, irregularly shaped, and often conformationally labile.  Protein crystal growth is 
typically performed by vapor diffusion.  A drop (on the nano- to microliter scale) of concentrated 
solution of the protein (> 10 mg/mL) is mixed with a solution containing a precipitant (typically a 
salt, organic solvent, or soluble wax) and then sealed into a chamber containing a larger volume of 
that precipitant solution “in the well” (Figure X.1).  Since the precipitant is at a higher concentration 
in the well, there will be vapor diffusion between the well and the drop until the concentration of 
the precipitant in the drop is as high as in the well.  This slow approach to a high concentration will, 
in ideal circumstances, promote growth of the crystal – to dimensions as large as 1 mm (not so big).   

 

Figure X.1.  Vapor diffusion method for protein crystallization  As the mixture of 
protein and precipitant concentrate, crystals may form. 

Note that the conditions required to create protein crystals (high salt or organic solvent, sometimes 
extremes of pH) are not necessarily similar to the physiological origins of the protein.  In addition, a 
protein in the crystalline state is not quite the same thing as a protein in the soluble state.  
Nevertheless, it’s worth noting that protein crystals are very different than salt crystals.  Sometimes 
as much as 80% of the volume of the crystal is solvent, with the protein acting as a sort of ordered 
network through which the bulk solvent flows (see Figure X.2).  Texturally, the protein crystal is 
more like a gel than a rock – easy to squish, and not prone to sharp cracks. 
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The Unit Cell 

 

Figure X.2.  (A) A cross-section of a protein crystal showing the tops of eight unit 
cells.  Each is related to each other by simple translation along the x or y axes. (B) 
Each unit cell contains four identical objects related to each other by a four-fold 
rotation axis perpendicular to the page.  The contents of one-quarter of the unit cell 
is, in this instance, the asymmetric unit. 

Crystals are ordered assemblies of matter.  That order is reflected in their composition. The least 
reducible unit of the crystal as the unit cell – that block of matter that can be used to recreate the 
entire crystal by translation along the x, y and z axes Figure X.2A).  It is somewhat similar to a 
collection of shoe boxes stacked vertically and horizontally to fill a room.  In an average protein 
crystal there are often 1017 individual unit cells.  The unit cell must be a parallelopiped (a prism 
having three pairs of parallel faces, each of which is a parallelogram, whose dimensions are defined 
by the cell axis lengths a, b and c, and whose faces are set off by angles of α, β and γ (the angle α 
denotes the angle between the b and c axes, β is between a and c, and γ is between a and b.)  The 
most symmetric parallelopiped is a cube, in which all cell axes are the same length (a = b = c) and all 
cell angles are 90˚.  Such unit cells are called “cubic.”  The least symmetric units cells are “triclinic” 
having cell edges of differing lengths and differing cell angles, none being 90˚.  The differing classes 
of unit cells are listed in Table X.1.  

The goal of the crystallographic experiment is to determine the position of every atom (or every 
non-hydrogen atom generally) inside the unit cell.  Small unit cells may contain one protein chain 
and have unit cell edges of 20 Å.  Large unit cells may contain several dozen protein chains and have 
cell edges above 400 Å.  Clearly, the crystallographic problem grows with the size of the unit cell, 
since that (in part) determines how many atoms will need to be located.  

However, it isn’t always necessary to build up the entire unit cell, atom by atom.  Often, unit cells 
contain internal symmetry that allows for a simplified problem.  While the crystal is built by stacking 
up unit cells in three dimensions, the unit cell can also be built up from simpler sections, using 
symmetry properties internal to the unit cell.  The classes of unit cells listed in Table X.1 list the 
minimal symmetry elements that are available within them.  Triclinic crystals are the least promising, 
since there is no internal symmetry at all.  However, an orthorhombic crystal, with three different 
cell edges but all angles of 90˚, has considerable internal symmetry.  Think of a typical shoebox, and 
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you have a picture of the orthorhombic crystal.  Looking at any of the faces straight on, you can 
rotate the unit cell by 180˚, flipping it over, and get back the same shape.  Those 180˚ turns occur 
along “two-fold” axes that relate two halves of the box (or unit cell) to each other.  That external 
appearance means that the two halves of the box contain identical arrangements of atoms.  Because 
all three faces have two-fold symmetry, the unit cell is comprised of four symmetry related sections 
– the asymmetric units (see Figure X.1B).   

Since the contents of the asymmetric unit are reproduced in other parts of the unit cell by simple, 
known symmetry operations, it isn’t necessary to solve the position of every atom in the unit cell 
individually.  Instead, one can solve the position of every atom in the asymmetric unit, and then use 
symmetry to reconstruct the full unit cell.  In the cases of orthorhombic and higher symmetry unit 
cells, this is a real advantage and can dramatically reduce the time required for structure solution. 

 

Table X.1.  Classes of units cells frequently observed in biochemical crystals. 

Class Rules for edges 
and angles 

Minimal Internal 
Symmetry 

Asymmetric 
Units per Unit 

Cell 
Triclinic a ≠ b ≠ c 

α ≠ β ≠ γ ≠ 90˚ 
none one 

Monoclinic a ≠ b ≠ c 
α ≠ γ ≠ 90˚ 
β = 90˚ 

1 two-fold two 

Orthorhombic a ≠ b ≠ c 
α = b = γ  = 90˚ 

3 two-folds four 

Tetragonal a = b ≠ c 
α = b = γ  = 90˚ 

1 four-fold & 
maybe 2 two-folds 

four or 
eight 

Trigonal a = b ≠ c 
α = b = 90˚  
γ  = 120˚ 

1 three-fold & 
maybe 1 two-fold 

three or 
six 

Hexagonal a = b ≠ c 
α = b = 90˚  
γ  = 120˚ 

1 six-fold & 
maybe 2 two-folds 

six or 
twelve 

Cubic a = b = c 
α = b = γ  = 90˚ 

symmetry all over 
the place 

twelve to 
forty eight 
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X-Rays and Diffraction 
X-ray diffraction is a misnomer – it’s really x-ray scattering.  X-rays scatter in three dimensions from 
electrons.  If you shine an x-ray beam on any random chunk of matter, you’ll see a fog of scattered 
x-rays on a detector set up on the opposite side of the sample.  On the other hand, if you shine x-
rays on a crystalline sample, the order of the sample leads to patterns of constructive and destructive 
interference and one obtains a “diffraction pattern” of discrete spots kind of like light reflected off 
of a disco ball.  While the mathematical reasons for the appearance of the diffraction pattern are too 
involved for this presentation, there is a simplified model that is predictive of the pattern.  Each spot 
is treated as a reflection that emanates from x-rays that are deflected off of parallel planes of atoms 
within the crystal.  This is the Bragg model for x-ray diffraction. 

Bragg’s Law – A Simple Approach to Understanding X-Ray Diffraction 

Diffraction is a common laboratory phenomenon.  UV/Vis spectrophotometers use diffraction 
gratings to select particular wavelengths of light for illumination of a sample.  Diffraction gratings 
are closely spaced mirrored surfaces that reflect light of varying wavelengths at varying angles (think 
of holding a compact disk up to a light at an angle).  In most x-ray diffraction experiments a single 
wavelength is selected (typically between about 0.7 to 2.0 Å). Thus “monochromatic” x-rays will 
only successfully reflect at a given angle if the “mirrors” are spaced at an appropriate distance.  
Based on the wavelengths of x-rays, these distances turn out to be appropriate for the dimensions of 
the unit cell in the crystal. 

 

Figure X.3.  (A) Constructive and (B) destructive interference from planes of atoms 
separated by a distance “d”. (Stolen from our friends at Wikipedia.) 

Imagine a simple crystal with one unit cell dimension of d and atoms at the corners of the unit cell. 
Atoms will lie along planes that are separated by that distance d, and you can imagine x-rays 
reflecting from those planes (Figure X.3).  If x-rays are directed at that set of planes with an incident 
angle of θ, they will reflect off at an angle of θ as well.  However, not every angle will lead to the 
observation of reflected x-rays.  Because of the possibility of destructive interference between x-rays 
reflecting off the parallel planes in differing phases, it’s important that the difference in path length 
between each reflected x-ray be an integral number of wavelengths.   Some simple trigonometry can 
be used to show that the following relationship can be used to predict the successful angle of 
diffraction: 
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 hλ = 2dsinθ 

In this equation, h is an integer and d is the spacing between planes. This is Bragg’s Law (Figure 
X.3). 

 

Figure X.4.  (A)  Bragg diffraction.  X-rays diffract from parallel planes at incoming 
and exiting angles of θ.  The path difference, 2x, must be an integral number of 
wavelengths.  (B)  Higher resolution diffraction, the dashed blue lines are diffracting 
from planes separated by d/3 at a sharper angle. 

Another way to think of h is as a divisor of d.  Bragg’s law will hold for x-rays diffracting off 
electrons that fall on imaginary planes that divide up the unit cell into n slices (Figure X.4).1  The 
newly written equation states that  λ  = 2(d/h)sinθ .   “d/h” is the resolution of diffraction, usually 
measured in units of Å.  By increasing h we divide up the unit cell into ever smaller sections and 
sample the electron density within the unit cell ever more finely.  This is like looking at an elephant 
through a fence of wood slats, where there are narrow gaps between the slats.  If the slats are 10 ft 
wide (low resolution), you’ll get some rough sense of how big the elephant is.  At 1 ft. wide (medium 
resolution), the slats are coming often enough to get a rough shape.  If the slats are about 2 inches 
wide (high resolution), you really can pretty much see everything you need to see of the elephant.  So 
it is with crystals.  The most important factor used to describe the quality of a crystallographic model 
is its resolution.  The lower the number (the current macromolecular record is 0.6 Å) the more detail 
you see.  Typically, we describe resolution in qualitative terms as well as numerical terms (and these 
are somewhat arbitrary): Low resolution is data taken at 3 Å and above, moderate resolution goes 
from 2 – 3 Å, high resolution is between 1-2 Å and atomic level resolution is below 1 Å.  Instead 
of an elephant, we’re looking at the distribution of electron density in the crystal.  At any point lower 
than 3 Å resolution its possible to make a good estimate of the shape of the molecule, but with 
increasing resolution comes increasing confidence. 

 

                                                
1 In all honesty, this a pretty sketchy way of thinking of diffraction, but it works fine as qualitative explanation.  There 
are plenty of great books that will give a quantitative view that is much more comprehensive but more difficult to 
comprehend. 
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Figure X.3 Shows the electron density around the same portion of a molecule 
solved to three differing levels of resolution.  This image was taken from Bernhard 
Rupp’s page at http://www-structure.llnl.gov/Xray/101index.html.  Note that the 
electron density becomes more precise and more specific at higher resolution (lower 
d/h spacing).  

Difficulties 

Ideally, all crystal structures should be solved to the highest possible resolution.  The best resolution 
achieved for a protein structure, to date, is about 0.6 Å  At that level of sharpness, one can see 
individual atoms as balls of electron density, and even hydrogen atoms are visible.  Sadly, it is often 
the case that we don’t get diffraction even nearly that far.  The biggest problem is order with in the 
crystals.  Since diffraction requires the ordered arrangement of 1018 unit cells in a crystal and ordered 
molecules within each unit cell, high resolution diffraction requires an extremely well ordered crystal.  
Protein crystals are often not well-ordered.  Where small molecule crystals are often solid samples of 
a given compound, protein crystals are really more of a gel, where protein molecules stack loosely 
and are surrounded by as much as 80% solvent.  At the very least surface residues have more 
disordered side chains than do core residues, which are usually tightly packed.  But there may be 
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variability in how the loosely packed proteins contact each other, and, at an even larger scale, the 
crystal is itself a “mosaic” collection of many smaller crystals, which may be more or less ordered 
with respect to itself.  A crystal that has sufficient order to diffract to 1 Å is a rare and beautiful 
thing.  More commonly, one finds oneself battling to get diffraction below 2 Å, and sometimes 
you’re grateful for 3 Å resolution.  Large molecules and assemblies of molecules, like the ribosome 
and viruses present classic problems in obtaining high resolution data. 

Measurement 

As a practical matter, good data depends on good data collection.  The crystal is mounted in an 
intense x-ray beam of a single wavelength, and data collection may last from 1-48 hours depending 
on the source of the x-rays, the detector, and the quality of the crystal(s).  Frequently the crystal is 
flash frozen at liquid nitrogen temperatures (100 K) to permit extended data collection or stability in 
the particularly intense beams available at synchrotron beam lines.  The most common detectors 
currently are CCD devices (like in digital cameras, but huge numbers of megapixels) and imaging 
plates (like in phosphorimagers).  A typical experiment requires many images be taken, so that the 
crystal is viewed across a range of angles.  The more symmetry in the crystal, the fewer degrees of 
rotation are required.  In the best case, one only needs to rotate about 22.5˚, but in the worst case 
180˚ of rotation are required.  Figure X.5 shows a typical diffraction image, collected at a 
synchrotron, of a moderately decent crystal.  

 

Figure X.5  Diffraction image from a protein crystal taken from 
http://userpage.chemie.fu-berlin.de/~psf/ifv_psfx.htm.  The concentric rings 
note the resolution at that angle of diffraction.  The inner most ring reads 10.2 Å 
while the outermost ring is at about 2 Å.  Note that the spots are weaker at the 
edges, demonstrating the difficulty of obtaining good quality, high resolution data. 

Diffraction and the Fourier Transform – Calculating Electron Density 

Consider a 1-dimensional crystal, in which atoms are placed at an even spacing along a line – 
essentially at the ends of 1-D unit cells (Figure X.6).  When x-rays diffract from this crystal, they will 
do so at angle prescribed by Bragg’s Law.  The diffraction pattern registered at a detector will have 
spots registered at increasing distance from the origin – that is, the point on the detector that would 
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be struck by the original, direct x-ray beam.  Each reflection is numbered (“indexed”) according to 
its distance from the origin using the variable “h”. 

 

Figure X.6.  Diffraction from a 1-D crystal yields a diffraction pattern in 1-D.  The 
reflections are indexed by the value of h (related to the integer values in Bragg’s 
Law). 

The structure of the crystal and the diffraction pattern are related to each other by the Fourier 
transform.  Each can be used to calculate the other.  The diffraction pattern is constructed of the 
scattered x-rays.  Each can be described using a structure factor, Fh, which has properties of 
amplitude (|Fh|), phase (α) and frequency (h) – like a wave.  The structure factor for each reflection 
can be calculated directly from the distribution of electron density, ρ(x), in the unit cell as shown 
below.  Note that electron density in a crystal is a continuous function, so we integrate.2 

 

€ 

Fh = ρ(x) ⋅ exp 2πihx[ ]
0

1

∫ ⋅ dx 

Similarly, the electron density can be calculated from the structure factors as follows.  Note that the 
diffraction pattern is a non-continuous function with indexed components, so we sum. 

 

€ 

ρ(x) = Fh ⋅ exp −2πihx[ ]
h
∑  

                                                
2 A curious person might wonder about the “exp[2πihx]” term.  This is a computationally easier way of expressing the 
cosine function.  Note that e(iφ) = cos(φ) + i.sin(φ).  In typical Fourier transform calculations, only the real component 
of this expression is needed 
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X-ray crystallography proceeds by measuring the structure factors (the diffraction pattern) and using 
it to calculate electron density. If we know all the parameters of the diffracted x-rays, we can 
recalculate the positions of the atoms in a crystal, such as the slightly more complex 1-D crystal in 
Figure X.7.  Note that the more reflections that you can measure, the more accurate the calculation 
of the positions of the atoms (though they can never be known with perfect precision). 

 

 

Figure X.7.  Illustration of the Fourier transform.  On the left we use the first five 
reflections (lowest resolution) to calculate the distribution of electron density in a 1-
D crystal (two unit cells are shown, each has 3 atoms).  On the right, we use 10 terms 
to obtain a higher resolution picture of the crystal.  Note that the small ripples are 
not real and reflect an imperfection in the calculation that is inherent to the Fourier 
transform. 

Thus, to determine the structure of a molecule, you need two pieces of information from each 
indexed “reflection” that is measured during the diffraction pattern:  the amplitude and the phase.  
The amplitude is related to the intensity of the x-ray striking the detector (the darker the spot, the 
higher the amplitude), but the phase cannot be measured.  (The phase corresponds to the point in 
the wave’s cycle at which the x-ray strikes the detector.  Does it strike at a peak, a valley or 
somewhere in between?)  Unfortunately, there is no way to measure that directly during data 
collection.  As a result, some fairly tricky and subtle methods have been introduced to allow 
crystallographers a guess (sometimes a good guess) at the phases. 

Obtaining the Phases 

Phase determination is the greatest hurdle in most crystallographic experiments.  The methods used 
require some complex geometric arguments to explain, so we’ll leave those alone  Instead, it should 
be sufficient to note that all of the methods listed in Table X.2 provide experimental phase 
information.  Sometimes the initial determinations are quite good, such as when the protein has 
previously been crystallized under very similar conditions, and sometimes they are quite poor.  The 
challenge is to overcome the latter situation and to obtain a reasonable structure despite limitations 
of the starting phases. 
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Table X.2 Some ways in which initial phases can be estimated. 

Method Description 

Multiple 
Isomorphous 
Replacement (MIR) 

Requires a derivative of the native protein with a heavy atom (like mercury 
or iodine) which scatters x-rays more strongly than other atoms in the 
molecule.  By finding the positions of those atoms, one can make some 
good approximations of the phases for all reflections. 

Multiple Anomalous 
Dispersion (MAD) 

Requires substitution with an atom that scatters x-rays asymmetrically at a 
particular wavelength.  Selenium, incorporated as selenomethionine, is very 
popular these days.  The method requires tunable x-rays, typically obtained 
at synchrotrons. 

Molecular 
Replacement (MR) 

Requires that you have a model of a similar protein that can act as a first 
guess for the structure of your protein.  You can make an initial estimate of 
the phases based on phases predicted for the model. 

Molecular Difference This is the easiest way to guess at phases.  If the protein has already been 
crystallized under similar conditions and it crystallizes similarly (same unit 
cell, etc.) then chances are the phases for the new structure are similar to 
those of the old structure. 
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Structure Determination 

Data Quality 

 Before attempting to solve the structure of a macromolecule by crystallography, one should 
have confidence in the data being used.  Table X.3 describes several measures that are routinely used 
to report on the quality of data being used in an experiment.     

Table X.3.  Descriptors of data quality employed in crystallography. 

Parameter Description 

Resolution This typically describes the extent of the data from low to high resolution that 
is being used.  The higher the resolution, the better, but that is often outside 
the control of the experimenter.  Usually a high resolution range will be given in 
parentheses.  These are the weakest data and must be especially defended by the experimenter. 

I/σ(I) Intensity vs. the standard deviation in intensity, or more simply, signal to noise.  
The higher this value the more reliable the experimental data. Typically the signal 
to noise ratio is given for the high resolution shell.  It should normally be about 2.0 or better.  
Lower values indicate that the experimenter is using very weak data to make their resolution 
look better than it is. 

Completeness Within any resolution range, there are a defined number of data points 
available.  Ideally, 100% of them will be measured, but anything over 90% is 
acceptable.  In the high range, it is common to see lower completeness.  Recognize that 
incomplete data collection has a negative impact on structure solution, but it is better to 
include all the data you have, so incomplete high resolution data is acceptable. 

Redundancy How many times was each reflection (data point) measured?  As in any 
experiment, the more measurements the better.  A redundancy of 3 is typically 
considered OK.  Higher is better.  Sometimes the experimenter will report 
total and unique reflections.  The ratio of those two gives the redundancy. 

Rsym Or sometimes, Rmerge.  This measures the residual (R) between multiple 
measurements of the same reflection.  It is the fractional or percent 
disagreement on average throughout the data set.  It should be 10% or less, 
though in the high resolution shell it may be up to 50%. 

 

 

The Model 

The desired outcome of any crystallographic experiment is a model for the molecule of interest.  
The most obvious attribute of that model is the positions of the atoms within the molecules – the x, 
y and z coordinates.  Crystallography also requires assignment of a fourth parameter for each atom – 
the so-called “B factor”.  Ideally, this is a measure of the thermal motion experienced by an atom in 
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the molecule, hence its alternate names, the “temperature factor” or “thermal parameter.”3  In fact, 
it describes all of the different things that contribute to varying position for an atom – rotation 
around bonds, disorder from unit cell to unit cell, and honest thermal motion. Typically, atoms on 
the surface experience a greater degree of positional disorder and will have larger B factors.  Most 
models include B-factors that range from about 10-200.  Assuming that the atom moves within a 
spherical region about a central point (not always a good assumption), then the radius of that motion 
can be calculated as: 

 radius of motion = 

€ 

B/8π 2  

For an atom with a B factor of 25 (pretty typical), the radius of motion is about 0.6 Å.  This is 
obviously an important issue to consider when thinking about where atoms in a molecule reside.  
Big B-factors mean that they move around a lot within the crystal. 

 

Model Building 

Once a good data set is in place and phases are available, the electron density map is calculated.  The 
protein sequence for a crystallized molecule is typically available, so the bonded structure of the 
protein is known – only the conformation is absent.  Model building proceeds by placing residues, in 
correct sequence, into the electron density as appears appropriate.  At high resolution, this can be 
straightforward and is often automated.  At low resolution, it can be quite difficult to distinguish 
which residue goes into which ill-formed blob of electron density.  Methionines and large aromatic 
residues are usually somewhat unique looking and typically provide toe-holds for model building. It 
is important to note that the software typically employed for model building restricts the experiment 
in only allowing residues with appropriate bond lengths and angles.  The dihedrals, which define 
conformation, are allowed to vary – though in some instances there are restrictions on those as well 
to avoid steric conflicts that might arise during the construction of the model. 

 

Refinement 

The first attempt to build a model often yields an incomplete structure with poor fit to the electron 
density.  Automated methods exist to modify the conformation of the model so that it better fits the 
electron density. This is the process known as refinement. The quality of the model is decided on 
two counts:  (1) its agreement with the intensity data taken from the x-ray experiment and (2) its 
stereochemical reasonableness – that is, does it look like a real molecule, with normal bond lengths, 
angles, etc.  

In judging the agreement with the data, the R-factor (often abbreviated Rcryst or Rwork) is measured.  
This value compares the measured amplitudes of the diffracted x-rays (given the abbreviation Fobs) 
and compares them to amplitudes that are predicted from the current model (Fcalc; see equation 
X.1). 

                                                
3 Another name is the Debye-Waller factor, which is more commonly used in other spectroscopic techniques. 
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€ 

Rcryst =
Fobs − Fcalc∑
Fobs∑

    (Eq. X.1) 

The better the agreement between Fobs and Fcalc, the lower the R-factor.  It is rare, even with modern 
refinement techniques, to see R-factors below 0.15 or 15%.  Oftentimes you will see a separate 
measure of quality reported, called Rfree.  Rfree is calculated in an identical fashion to Rcryst except that 
a small subset of the total data (5-10%) is set aside and not used in refinement.  If refinement is 
doing a good job, the Rfree should sink along with Rcryst.  However, it is possible to play games to try 
to optimize Rcryst without really doing a better job of modeling the protein.  Rfree tends to reveal that 
sort of tawdry behavior and makes a negative example of your cheating ways.4 

The stereochemical quality of the model is easier to evaluate.  Are the backbone dihedrals found in 
“allowed” regions of Ramachandran space?  Are the deviations between the bond distances in your 
model and “ideal” bond distances small (< 0.02 Å) and so are the bond angles (< 2˚).  If so, then 
your protein looks like what we expect a protein to look like, and all is good.  It should be 
recognized, however, that there is almost always a tension between fit of the crystallographic data 
and stereochemical parameters.  At lower resolution, one frequently accepts the dictates of 
stereochemistry, because the electron density just can’t be used to any precision.  On the other hand, 
at atomic level resolution, it is possible to allow stereochemical concerns go.  The data is of such 
good quality that it should be able to give a good looking model with no coaching from some table 
of what molecules “should” look like. 

A Cautionary Note 

So you have a model prepared from crystallographic data.  The data was high resolution, the R-
factor is low (as is Rfree) and the model agrees with stereochemical conventions.  It still may be 
bogus.  Crystallography depends upon taking a soluble (or membrane-bound) protein and placing it 
into a dense, arrayed state using a variety of precipitants, including salts, organic solvents, and 
polymers.  The pH may be far from physiologically relevant, and low temperature data collection 
may freeze out a portion of the structure that is normally quite flexible.  Crystal contacts may block 
active sites and distort the surface of the molecule.  How do you know if what you’re seeing is real?  
Simple – the model is a guide for experiments.  It is not an end unto itself, but rather a tool to be 
used in describing and predicting the behavior of the protein.  Frequently, crystallized protein retain 
activity even in the crystal and can be seen to adopt structures wholly consistent with biochemical 
experiments.  In fact, that is the rule rather than the exception.  Nevertheless, always use a model 
with some skepticism.  These structures are the product of human endeavor and are subject to all 
the errors that come with it.  But even so, they provide some of the most compelling evidence for 
the means by which proteins achieve their unusually fine-tuned properties. 

                                                
4 A great description of these games and their failings has been published by Alwyn Jones and Gerard Kleywegt (1995) 
Structure 3, 535. 


