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L.  RECEPTOR-LIGAND DISSOCIATION 

In biology, structure is meaningless absent function.  Among the most fundamental functions in 
biochemistry is binding.  We commonly discuss receptor-ligand interactions.  The receptor is 
commonly a macromolecule (protein or nucleic acid) and the ligand is typically a smaller molecular 
species, though it is possible for two proteins to engage in receptor-ligand interactions, so the 
definition of “receptor” and “ligand” is pretty vague except to say that they are two molecules that 
associate via non-covalent interactions.   

Common examples of receptor-ligand complexes are: 

• Drugs bound to proteins, such as AZT binding to the HIV reverse transcriptase enzyme. 
• Hormones bound to hormone receptors, such as estrogen to the estrogen receptor. 
• Antibody proteins binding to antigens, such as virus coat proteins. 
• Protein bound to DNA, such as the lac repressor bound to its DNA operator sequence. 
• Amino acids to riboswitches, small RNA sequences that fold around small molecules to 

regulate gene expression. 
 
A common, yet striking feature of these interactions is the specificity with which the complexes 
form.  The ideal drug will only bind to one target protein in the cell.  If the wrong hormone binds to 
the wrong receptor all sorts of problems, physical and emotional, ensue.  Antibodies that attack self-
proteins lead to autoimmune diseases like rheumatoid arthritis.  A protein that binds to the wrong 
piece of DNA can shut down an essential metabolic pathway, and a riboswitch that binds the wrong 
amino acid will cause the cell to stop making the wrong amino acid just when it’s needed most. 

Explaining the structural origins of receptor-ligand specificity is an on-going project of biochemistry. 
While we have already laid out some of the tools to describe structure, we now need to quantify 
specificity. That will be done using the dissociation constant, Kd.  

Simple Equilibrium Binding of Receptors to Ligands 

The Dissociation Constant 

Receptor-ligand interactions are equilibrium phenomena.  A free receptor (R) associates non-
covalently with the free ligand (L) to form the receptor ligand complex (R•L; note that the dot, •, 
will commonly be used this semester to indicate a non-covalent association). Although we are 
primarily concerned with the formation of the R•L complex, for reasons that will become apparent, 
we typically discuss the interaction in terms of the dissociation of the complex: 

 R•L ! R + L 

Accordingly, the following equilibrium constant holds. 
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Kd =
[R][L]
[R • L]

        (Eq. L.1) 

Where Kd is the so-called “dissociation constant”, reflecting the degree of dissociation of the 
receptor and ligand from each other. 

The numerical values of dissociation constants are typically given in units of concentration (though 
Dan Gerrity will tell you, quite rightly, that equilibrium constants are unitless).1  The reason for this 
convenience will appear shortly, but for now it’s worth noting that in biology, the value of Kd can 
vary dramatically from one receptor ligand pairing to another.  Typical values range from 10-15 M to 
10-6 M, which reflect free energies of dissociation (∆Gdissoc) from +21 kcal/mol (positive and 
unfavorable) to +8 kcal/mol (still unfavorable, but not as much so).  However, binding can be as 
tight as to give zeptomolar Kd values (10-21 M) and weak enough to be in the millimolar range (10-3 
M). 

Graphical Determination of the Dissociation Constant 

The most common means of determining the Kd for a given R•L complex is to vary the 
concentration of ligand in a solution containing a fixed, low concentration of the receptor.2 At each 
concentration of ligand, the fraction of bound receptor is measured.  That fraction (Y) is represented 
as: 

 

€ 

Y =
[R • L]
[R]total

        (Eq. L.2) 

Where [R]total is the total amount of receptor present in the assay – typically at much lower 
concentrations than the total amount ligand.  Note that the total amount of receptor can be 
expressed as the sum of the concentrations of free ([R]) and bound ([R•L) receptor. 

 Y =
[R • L]
[R ]total

=
[R • L]

[R ]+[R • L]
      (Eq. L.3) 

The algebraic expansion in equation L.3 is the most important algebraic trick to learn in 
biochemistry.  Almost every derivation we will do this semester starts with a fraction of some form 
of a biological molecule divided by all forms present.  The first step is always to expand the total 
amount into all those forms.  From here we proceed to substitute for [R•L], using equation L.2, to 
obtain the fraction of bound receptor as a function of free ligand concentration. 

                                                
1 For details on why that is the case, see Appendix L1. 

2 The low concentration of receptor is key to a simplifying assumption that the concentration of free ligand is equal to 
the total concentration of added ligand.  That is, the amount of ligand actually bound to the receptor should be 
negligible in comparison to the total in solution.  See Appendix L.2 for the algebra when that isn’t true. 
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Y =
[R • L]

[R ]+[R • L]
=

[R ][L]
Kd

[R]+[R ][L]
Kd

     (Eq. L.4) 

Note that in equation L.4, the numerator and denominator are both multiples of [R], which may be 
factored out. 
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   (Eq. L.5) 

When both numerator and denominator are multiplied by Kd, the following form of the equation is 
obtained. 

Y =

[L]
Kd

1+[L]
Kd

⋅
Kd

Kd

=
[L]

Kd +[L]
     (Eq. L.6) 

Equation L.6 allows Y to range from a value of zero (when the concentration of free ligand is zero) 
to one, but that is only approached at very, very high concentrations of ligand (Figure L.1).  Of 
particular interest is that when [L] is equal to Kd, the fraction of bound receptor is ½. 
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Y =
[L]

Kd + [L]
=

Kd

Kd +Kd

= 0.5     (Eq. L.7) 

Kd can therefore be interpreted as the ligand concentration that leads to 50% occupancy of the receptor’s binding 
site.  The lower the value of Kd, the less ligand required to achieve 50% occupancy, indicating a 
higher affinity between receptor and ligand. 
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Figure L.1. Plot of fraction bound receptor (Y) vs. the concentration of ligand.  Note 
that the Kd can be identified from this plot as the concentration of ligand that yields 
50% bound receptor.  Note also that even at ligand concentrations 20-fold higher 
than the Kd, only 95% of the receptor is bound. 

  

Equation L.6 provides an algebraic relationship between Y and [L] that is often visualized graphically 
(Figure L.1).  The plot of Y vs. [L] yields a rectangular hyperbola that asymptotically approaches a 
value of 1 as the concentration of L increases.  From a visual perspective, it’s worth noting that the 
approach to the asymptote is somewhat slower than one might guess.  In Figure L.6, the Kd can be 
identified as the [L] that gives 50% bound receptor, or 50 µM L in this instance.  At 500 µM L, the 
fraction of bound receptor is only about 90% of the total (prove this to yourself by some simple 
arithmetic) and even at 20-fold excess L above the Kd, 95% of the receptor is bound.  Because of 
the large changes in bound fraction taking place at low concentrations of L and the slow, dreary rise 
after Kd, it is common to find these plots depicted with a logarithmic x-axis (Figure L.2). 

 

Figure L.2. Plot of fraction bound receptor (Y) vs. the concentration of ligand, with 
logarithmic x-axis.  Note that the Kd can be identified from this plot as the 
concentration of ligand that yields 50% bound receptor, which also happens to occur 
at the inflection point.  This depiction of the data provides a better view of the curve 
fit at low and high ligand concentration. 

Free Energy of Dissociation 

As noted above, the dissociation constant provides a convenient measure of affinity. The lower the 
value of the equilibrium constant, the tighter the binding.  Importantly, equilibrium constants can be 
linked to thermodynamics via the equation: 

 ∆Gdiss˚ = -RTln(Kd)       (Eq. L.8) 

The free energy of dissociation takes the equilibrium constant into the land of kcal/mol (or kJ/mol 
if you must) and allows simple thermodynamic comparisons between different ligands or different 
receptors.  One important caveat to this equation is the assumption that all equilibrium constants 
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must be in units of Molar (or bar), since the standard state assumes all solutes to be at 1 M 
concentration (or 1 bar pressure). In the example above, where the Kd is 50 µM, it must be 
expressed as 50 x 10-6 M before use in Eq. L.8: 

 ∆Gdiss˚ = = -(0.001987 kcal/molK)(298 K)(-9.9) = +5.9 kcal/mol  (Eq. L.9) 

Note that the positive change in free energy is sensible, since the dissociation constant is less than 
one; dissociation is non-spontaneous at the standard state. 

Cooperative Binding of Ligands 

low
affinity

high
affinitytense relaxed

 

Figure L.3 Schematic representation of cooperative binding.  A dimeric receptor in 
a low affinity state (also called the “tense” state) binds a ligand (green triangle) and 
changes conformation to the “relaxed” state, which has higher affinity for a second 
ligand. 

In most instances, the simple binding model for receptor-ligand interactions works fine.  However, 
more complex patterns of binding exist.  For example, some receptors are multimeric – dimers, 
trimers, tetramers, etc.  While each subunit of the receptor may individually bind one ligand 
molecule, it is possible for the binding of the first ligand to the first subunit to affect binding of 
subsequence ligands to other subunits in the complex.  Figure L.3 illustrates the phenomenon, called 
cooperative binding.  In this instance, there is positive cooperativity, since the second binding 
event is more favorable than the first.  Note that this is due to allostery (Greek for “other place”); a 
ligand binding event changes the structure of a remote part of the receptor. 

 



 L.6 

Figure L.4 Graphical representation of ligand binding to a receptor with positive 
cooperativity.  Note the sigmoidal shape of the plot, even with a linear x-axis.  
Affinity is low initially, but rises sharply as some of the dimeric receptor becomes 
bound to the first ligand and changes to the relaxed state, with greater affinity for the 
ligand.  KH is the Hill coefficient (see below); 200 µM in this case. 

From a graphical perspective, cooperative binding is in evidence when a plot of fraction of bound 
receptor (Y) vs. ligand concentration gives a sigmoidal plot.  Note that the x-axis is linear in Figure 
L.4; the weak binding observed at low [L] gradually accelerates at moderate concentrations.  This is 
positive cooperativity, where receptor multimers bind ligand weakly at first, but as bound subunits 
come to exist, subsequent binding events occur with higher affinity.  On the other hand, if binding 
to the second subunit is made less favorable, that’s negative cooperativity.  If there is no effect; if 
each subunit acts independently, then no cooperativity is observed.  

There are a few common ways of treating cooperativity algebraically.  Two of them are discussed 
below. 

The Hill Coefficient 

The first treatment of cooperativity is simplistic, but powerful – it assigns a single value to the 
degree of cooperativity being observed, called the Hill coefficient, n.  The Hill coefficient is an 
imaginary value that sort of describes the number of ligands that simultaneously bind to a 
multimeric receptor: 

 R + n L ⇔ R•Ln       (Eq. L.***) 

This value is essentially an abstraction that helps fit the curve.  Imagine a dimeric receptor – there 
are three general scenarios that could arise: 

• Positive cooperativity, n > 1.  The affinity of the second ligand for the dimer is greater than 
the first.  It will bind more readily.  In the extreme case, both ligands appear to bind simultaneously, 
since the affinity of the second is so great.  In that extreme case, n=2.  

• No cooperativity, n = 1.  The affinity of the second ligand is the same as the first.  In that 
case, the two subunits essentially behave independently and can be treated by the simple model 
described in Figure L.1 and Equations L.1 and L.6. 

• Negative cooperativity, n < 1.  The affinity of the second ligand is less than that of the first. 
To determine the value of the Hill coefficient, one simply uses a modified form of equation L.6, in 
which KH, the Hill constant, replaces Kd, the dissociation constant.  As with Kd, KH is the 
concentration of ligand that gives half-maximal binding of the receptor. 

 Y = [L]n

KH( )n +[L]n
       (Eq. L.***) 

The Hill coefficient, n, is a way of roughly measuring how much the binding of one ligand 
influences binding of another.  In a multimeric protein, the maximum value of n is equal to the 
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number of subunits present.  In a dimer, the maximum Hill coefficient is two – in a tetramer, it is 
four.  Etc.   

If one has a dimeric receptor with a Hill coefficient of 1.5, then that means there is significant 
increase in affinity for the second ligand, but not enough to guarantee that the second equivalent will 
bind immediately. 

The KNF Model 

Daniel Koshland, in collaboration with George Nemethy and D. Filmer, developed an algebraic 
model for how ligand binding can allosterically affect the behavior of complex receptors (and 
enzymes).  Their model describes the modulation of affinity at some receptor binding site by ligand 
binding to a more remote site.3  Imagine, again, our dimeric receptor.  The assumption is that the 
dissociation constant of the second ligand is different from the first. 

 R•L ⇔ R + L  

€ 

Kd =
[R][L]
[R • L]

     (Eq. L.***) 

R•L2 ⇔ R•L + L Kd2 = a ⋅Kd =
[R • L][L]
[R • L2 ]

   (Eq. L. ***) 

Note that the second dissociation constant can easily be related to the other by a constant factor, a.  
When a is less than one, the binding of the second equivalent is tighter than the first.  If a is greater 
than one, binding of the 2nd equivalent is weaker.  The nice thing about “a” is that it has physical 
meaning where “n” from the Hill analysis is a little make-believe. 

The algebraic analysis by the KNF model is relatively simple, but it needs to be done with an eye to 
the number of subunits in the receptor.  In this case, I will do it for a dimer.  The derivation starts 
just like it did in Eq. L.2: 

Y = 2[R • L]+[R • L2 ]
[R]total

=
2[R • L]+[R • L2 ]

[R]+ 2[R • L]+[R • L2 ]
  (Eq. L.***) 

The one wrinkle here is that the definition of the fraction of bound receptor is altered by the fact 
that there are different states of the receptor that may be considered “bound”.  For example, if we 
labeled the two subunits A and B, we have two possible singly bound states, R•LA and R•LB, where 
the subscript ID’s the subunit in which the ligand is bound.  Since they are chemically 
indistinguishable, the concentrations are lumped together as 2[R•L].  Of course there is only one 
way to have an empty receptor, R, and completely occupied receptor, R•L2, so in Eq. L.*** they 
appear in multiples of one only.  The remainder of the derivation is pretty straightforward. 

                                                
3 I’m being a little simplistic in this section.  KNF deals with a variety of scenarios that I don’t feel like covering. 
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Y =

2[R][L]
Kd

+
[R•L][L]
a ⋅Kd

[R]+ 2[R][L]
Kd

+
[R•L][L]
a ⋅Kd

=

2[R][L]
Kd

+
[R][L]2

a ⋅Kd
2

[R]+ 2[R][L]
Kd

+
[R][L]2

a ⋅Kd
2

=

2[L]
Kd

+
[L]2

a ⋅Kd
2

1+ 2[L]
Kd

+
[L]2

a ⋅Kd
2

 (Eq. L.*) 

It’s not easy to see what concentration of ligand gives a Y of 1/2, but the nice thing is that it gives 
discrete values of dissociation constants for each of the two dissociation events. 
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Appendix L.1 -  Units in the Equilibrium Constant 

The Physcial Chemist’s Perspective 

Strictly speaking, equilibrium constants are unitless.  That is because they are always referenced to a 
standard state in which (a) liquids and solids are pure, (b) gasses are at 1 bar pressure and (c) 
solutes are at 1 M concentration. 

When we write equilibrium expressions, that truth is generally ignored, but a physical chemist would 
insist that the correct way to write the dissociation equilibrium constant (Kd) of a ligand from a 
receptor is as follows: 

 R•L ⇔ R + L   Kd =
γR
[R]eq

[R]ss
"

#
$

%

&
'⋅ γL

[L]eq
[L]ss

"

#
$

%

&
'

γRL
[RL]eq

[RL]ss
"

#
$

%

&
'

 

Where γX is the unitless activity coefficient for species X, [X]eq is its equilibrium concentration (in 
Molar) and [X]ss is its standard state concentration (1 M). In dilute solutions, γX is close to one, and 
the standard state concentrations are one (molar), so the only numerical value that really matters is 
the equilibrium concentration, but because each species is present as a ratio of concentrations, the 
overall value of Kd is unitless, but its value is normally defined from concentrations calculated in 
units of Molar, and that matters, as we’ll see. 

The Biochemist’s Perspective 

 

Biochemists write equilibrium constants with units attached because we are calculating them using 
an incorrect equation for the equilibrium constant: 

 R•L ⇔ R + L   Kd =
[R]eq[L]eq
[RL]eq

 

This presents a problem when it comes time to calculate ∆G˚ from Kd because now the equilibrium 
constant has units and you can’t take the logarithm of values with units: 

 ∆G˚ = -RTln(Kd) 

Moreover, we often don’t calculate the equilibrium constant from concentrations expressed in 
Molar. Sometimes it is µM, sometimes nM, etc.  So to make yourself right with the physical 
chemistry community, before calculating ∆G˚, recalculate Kd in units of Molar and then remember 
that the true formula for Kd would have those units cancel out.  Now you’re ready to calculate ∆G˚. 
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Appendix L.2 – When [R]tot is close to Kd 
The algebra described for simple ligand binding in equations L.1-L.6 assumes that the concentration 
of receptor is vanishingly small in comparison to the amount of ligand present.  In that way, it takes 
a very small fraction of the ligand present in the test tube to bind the receptor completely.  For 
example, if there is 1 nM receptor and the Kd of the R•L complex is 50 µM, then the concentration 
of free ligand is: 

 [L] = 50 µM – ½(1 nM) ≈ 50 µM      (Eq. L.A1) 

Thus the amount of the total ligand is roughly the same as the amount of free ligand, and we can use 
equation L.6 without jeopardy. 

In some instances, however, the receptor is present at concentrations near Kd.  For example, 
imagine a system in which the total concentration of the receptor is 1 nM and the Kd is 2 nM.  When 
50% of the receptor is bound there is 2 nM of free ligand in the solution and 0.5 nM of the bound 
ligand, meaning that the total amount of ligand in solution is 2.5 nM.  Thus the total ligand 
concentration that gives 50% bound receptor is not the Kd.  We can no longer make the assumption 
that total ligand concentration and free ligand concentration are the same.  The following algebra 
fixes that. 

Kd =
[R ][L]
[R • L]

=
[R ]tot −[R • L]( ) [L]tot −[R • L]( )

[R • L]

Kd =
[R ]tot ⋅[L]tot − [L]tot +[R ]tot( )[R • L]+[R • L]2

[R • L]

Kd[R • L]= [R ]tot ⋅[L]tot − [L]tot +[R ]tot( )[R • L]+[R • L]2

0 = [R ]tot ⋅[L]tot − [L]tot +[R ]tot +Kd( )[R • L]+[R • L]2

 

The last equation is a second order polynomial in which one can solve for “x”, [R•L], using the 
quadratic equation. 

 [R • L]=
[L]tot +[R ]tot +Kd( )− [L]tot +[R ]tot +Kd( )

2
− 4 ⋅1⋅[R ]tot ⋅[L]tot

2 ⋅1
 

And then we can get Y in a quick little bit of division! 

 Y =
[R • L]
[R ]tot

=
[L]tot +[R ]tot +Kd( )− [L]tot +[R ]tot +Kd( )

2
− 4 ⋅[R ]tot ⋅[L]tot

2 ⋅[R ]tot
 

So, when to use it?  As a rule, any time Kd is less than ten times the total receptor concentration. 


