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 K.  ENZYME KINETICS AND CATALYSIS 
Biochemical reactions are too slow to support life at room temperature.  Whether it is the 
synthesis of proteins, the metabolism of sugars or the oxidation of fatty acids, all of it proceeds 
on a time scale unsuitable for life.  Moreover, many reactions that are undesirable proceed on a 
comparable timescale, making it even more difficult to coordinate the necessary chemistry to 
support life.  How useful would it be to have polynucleotides degrading faster than they are 
synthesized?  

The basic reactions associated with the synthesis and degradation of essential polymers, and with 
the metabolism of nutrients all require massive rate accelerations to be of any service to the cell.  
By specifically accelerating those reactions of interest without accidentally accelerating 
undesired reactions, as would happen by simply heating the pot, biochemical catalysts shape 
chemistry in such a way as to permit every biological process required for survival and 
propagation. 

Basic Kinetics 

Reaction Rates 

 The rate of a reaction is defined as the instantaneous rate of change in the concentration 
of a starting material (“substrate” in biochemical nomenclature – abbreviated “S”) or a product 
with respect to time.  By definition, reaction rates are always positive, which leads to the 
following definition of reaction rate, abbreviated v (for velocity) in most of the biochemical 
literature. 

 S → P     (eq. K.1) 

 
  

€ 

v =
d[P]
dt

= −
d[S]
dt

   (eq. K.2) 

Because these are instantaneous rates of change, they can be obtained as tangents to curves that 
plot [P] or [S] vs. time.  Typically, one takes the initial rate (Figure K.1) – as close to the point of 
initiation of the reaction as possible, since the reaction components are well-defined at that 
moment.  As the reaction progresses the reaction mixture is less well understood, which 
complicates further analysis of the rate data, as described in the next section. 

Rate Laws 

The rate of a reaction is typically defined as the rate of production of product with respect to 
time, d[P]/dt, or v, for velocity.  That rate can often be defined as proportional to algebraic 
functions of the reactants, and sometimes products, in a reaction.  The proportionality constants 
are the rate constants.  Thus for a reaction in which A + 2B → C, one might arrive at the rate 
law: 
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 v = k[A][B]    (eq. K.3) 

This rate law is said to be first order in both A and B, and second order overall.  The rate 
constant, written as lower case k, is defined therefore as a second order rate constant and will 
have units of M-1s-1, which combines with the units of [A] and [B] to give velocity in M/s.  Note 
that the rate law need not correlate with the stoichiometry, though it may.  The stoichiometry will 
inform the order of the reaction with respect to the reactants if it is an elementary reaction, and 
reflects the explicit interaction of the reactant(s) in a single chemical step.  For example, in the 
simplest of all possible reactions, a single starting reactant, S, reacts independently to create the 
product P (eq. K.1 above).  The rate law for that reaction will be: 

 v = k[S]    (eq. K.4) 

Where the reaction is first order and the rate constant is a first order rate constant with units of 
inverse time. 

 In both of these examples, the concentration of the reactant(s) will impact the rate of 
reaction.  The more reactant, the faster the rate of reaction, all other things being equal.  The 
other determining influence on reaction rate is the rate constant, whose numerical value is 
constant really only if everything going on around the reactants is constant:  temperature, 
solvent, ionic strength and so on.  Nevertheless, the rate constant is a characteristic of the 
reaction and can be defined independently of the concentrations of reactants, which are 
controlled externally, either by the experimenter, or by other cellular processes. 

 One important caveat.  It is difficult to compare first order and second order rate 
constants to each other.  There is often temptation to look at the scalar values, but it is important 
to remember that the units on a first order rate constant (s-1) and a second order rate constant (M-

1s-1) are different, so it is something like comparing 1 apple to 2 orangutans, they are different 
numbers of different beasts.  

The Rate Constant and Transition State Theory 

You may recall from Chem 102 that the rate of reaction increases with temperature, which led to 
the formulation of the following equation by Arhennius: 

 k = Ae-Ea/RT    (eq. K.3) 

where A is the Arrhenius constant, with the same units as the rate constant, and Ea is the 
activation energy of the reaction.  The exponential term indicates the fraction of molecules 
possessing the activation energy at a given temperature.  As temperature increases, that fraction 
increases to a maximum value of 1.  While this equation works well, it hides the entropic terms 
in the gemisch that is the Arrhenius constant, and leaves only the activation energy as an 
approximation of the enthalpic barrier for the reaction. 
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Figure K.1.  A reaction coordinate diagram taking starting material S to product 
P.  The equilibrium constant for the reaction is determined by ∆G˚ and the free 
energy of activation is ∆G‡.  The transition state is the highest energy structure on 
the reaction coordinate and is labeled X‡. 

Transition state theory allows us to separate the enthalpic and entropic components affecting the 
rate constant, by replacing the energy of activation with a related term, the free energy of 
activation, ∆G‡, the free energy barrier to the reaction (Figure K.1).  As with any free energy 
term, we can separate it into the enthalpic and entropic components: 

 ∆G‡ = ∆H‡ - T∆S‡   (eq. K.4) 

Typically, the formation of X‡ is endothermic, since bonds are typically in the process of 
breaking, and entropically unfavorable, since you need to organize the starting material(s) just so 
in order to obtain the reaction.  But we’ll save that for later.  In the meantime, note that the 
change in free energy of the reaction, ∆G˚, allows us to calculate the equilibrium constant for the 
reaction.  The free energy of activation allows us, similarly, to calculate and equilibrium constant 
– that between the starting material S and the transition state X‡.  That equilibrium constant K‡ is 
defined as: 

 K‡ = 
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[X±]
[S]

= exp −ΔG±

RT
$ 
% 
& ' 

( 
)   (eq. K.5) 

The larger the value of ∆G‡, the less favorable the reaction, though by definition, all ∆G‡ values 
are positive and thus disfavored.  As a result, X‡ is a scarce species.  The equilibrium constant 
does not favor its production, though increasing the temperature will increase the value of K‡ 
since this is an endothermic reaction.   

Inherently, the rate of reaction is determined by how fast X‡ decays to form product.  The 
frequency of breakdown to products is ν‡ and has a numerical value of 6.2 x 1012 s-1 at 298 K.1  
Thus we get the following equation for the rate: 

                                                
1 ν‡ = kBT/h, where kB is Boltzmann’s constant (1.38 x 10-23 J/K) and h is Planck’s constant (6.626 x 10-34 Js). 
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 v = ν‡[X‡] = ν‡K‡[S]    (eq. K.6) 

This is a first order rate law, where the rate constant is ν‡K‡.  We can substitute for K‡ from 
equation K.5 and obtain the following: 
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k = ν ± exp −ΔG±

RT
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& 
' ( 

) 
*    (eq. K.7) 

Thus we have a form for the rate constant quite similar to the Arrhenius equation, replacing A 
with ν‡ and Ea with ∆G‡. 

Table K.1.  Some sample reactions with rate constants at pH 7 and at 298 K. 
 

Reaction Rate constant (s-1) Half-life (yr) 
CO2 + H2O → HCO3

- + H+ 0.0358 19 s 
Amide hydrolysis 5.4 x 10-11 400 yr 
Phosphodiester hydrolysis 1.7 x 10-13 130,000 yr 
 
The numerical value of rate constants in biologically interesting reactions is quite variable, 
ranging from rapid to (literally) deathly slow.  A sampling is given in Table K.1.  Needless to 
say, it would be pointless to ingest a steak if the half-life for peptide bond hydrolysis in the body 
were 400 yr.  But just as bad, waiting 20 s for half the CO2 in the cell to dissolve may be 
physiologically disastrous for a cell that is undergoing rapid respiration. Similarly, the stability 
of cellulose would have led to a biological landscape littered with plants that never decay after 
death, tying up huge quantities of carbon.  Clearly nature has developed the means to catalyze 
those reactions – to raise the rate constants to values that serve the organisms that depend upon 
them.  Catalysis is achieved by lowering the free energy barrier, ∆G‡, thus increasing the 
population of X‡ at a given temperature and enhancing the rate of product formation (Figure 
K.2). 
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Figure K.2.  A reaction coordinate diagram taking starting material S to product 
P.  The equilibrium constant for the reaction is determined by ∆G˚ and the free 
energy of activation is ∆G‡.  The transition state is the highest energy structure on 
the reaction coordinate and is labeled X‡. 
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In solution, one can often lower the free energy of the transition state simply by changing 
solution conditions.  For example, SN2 nucleophilic displacement reactions are typically faster in 
polar aprotic solvents, since the negative charge build-up on the leaving group and positive 
charge building up on the nucleophile can both be stabilized by interactions with the polar 
medium.2 Since most biochemical reactants take place in a common environment, the cytoplasm 
of a cell, there’s not much hope of optimizing the rate of reaction by tailoring the solvent 
conditions.  Instead, biochemical catalysis is achieved by creating a specialized environment for 
each reaction that selectively complements and stabilizes the transition state of that one reaction 
and none other.  That specialized environment is the active site of an enzyme. 

Michaelis-Menten Kinetics 

Enzymes 

For every biochemical reaction requiring acceleration, there is an enzyme – a molecule, typically 
a protein though sometimes RNA, that acts as a catalyst.  While some enzymes are generalists, 
acting on many related reactants, many are quite specialized, focusing on a single reaction.  The 
middle part of the 20th century saw a huge investment in discovering new enzyme activities and 
categorizing them.  The recent advent of whole genome sequencing continues to add new 
activities, and the increasing appreciation of the biodiversity of microbes has likewise expanded 
our understanding of the range of catalysts operating under a variety of unusual conditions 
enabling a suite of potentially useful transformations.  Enzyme activities are categorized by 
Enzyme Commission Number, which provides a sorting mechanism for the diversity of 
catalysts that have been identified.  At the highest level, there are six classes of enzyme activities 
as listed in Table K.2. 

Table K.2. Listing of Enzyme Commission categories 
 

E.C. Category Reaction Class Example 
1 Oxidoreductases Alcohol dehydrogenase oxidizes ethanol to 

acetaldehyde. 
2 Transferases EcoR I methylase transfers a methyl group from 

S-adenosyl methionine to the N2 amino group of 
adenine. 

3 Hydrolases Trypsin hydrolyzes the peptide bond in proteins 
4 Lyases Aldolase breaks the carbon-carbon bond of 

fructose-1,6-bisphosphate. 
5 Isomerases Xylose isomerase interconverts the aldose xylose 

with the ketose xylulose, both C5H10O5. 
6 Ligases Aminoacyl-tRNA synthetases create covalent 

connections between amino acids and tRNA 
molecules. 

                                                
2 Conversely, the rate can be slowed in polar, protic, solvents like alcohols because the nucleophile becomes 
stablilized by interactions with the solvent, effectively lowering the energy of S and putting a steric barrier of 
desolvation that must be overcome before the nucleophile can react. 
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Typically an enzyme’s name reflects its function, though many archaic names are still out there.  
For example trypsin tells you nothing, but describing it as an endopeptidase tells you that it 
cleaves proteins at internal peptide bonds (the suffix –ase is common among all IUPAC-
approved enzyme names). 

A Simple Rate Law for an Enzyme-Catalyzed Reaction 

 Enzyme reaction mechanisms can be quite complex and involve several steps that must 
each be considered in proposing a rate law that fully describes catalytic behavior.  In this section, 
we will focus on the simplest of all possible enzyme catalyzed reactions, in which a single 
substrate is converted to a single product in the presence of an enzyme: 

 E + S → E + P    (eq. K.8) 

Early in the last century it was recognized that this is not a simple, one-step mechanism.  Were it 
so, the predicted rate law for the reaction would have the a “molecularity” that reflects the 
stoichiometry of the reaction.  The rate law would be first order in enzyme and in substrate: 

 v = k[E][S]    (eq. K.9) 

Thus, one would predict that there would be a linear increase in the initial velocity of a reaction 
as one raised substrate concentration while holding the concentration of enzyme constant (Figure 
K.3).  In fact, that is not the case.  One instead observes saturation behavior.  The rate of 
reaction levels off to some maximal rate at high substrate concentration (Figure K.3). 
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Figure K.3.  The rate relationship to substrate concentration in enzyme catalyzed 
reactions.  A first order reaction in substrate would give a straight line (dashed), 
but enzyme-catalyzed reactions typically show saturation behavior and reach a 
maximum velocity at high substrate concentration (solid line).  Here, the maximal 
velocity (Vmax) is 10 µM/s, and is indicated by a faint horizontal line. 
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Saturation kinetics can be explained by the following mechanism, first sketched out by Michaelis 
and Menten in 1912 (and often called the Michaelis-Menten mechanism): 

 E + S ! E•S → E + P   (eq. K.10) 

The reaction takes place in two discrete steps.  The first involves reversible formation of a non-
covalent complex between the enzyme and substrate (E•S), sometimes called the Michaelis 
complex, and the second step involves breakdown of the  E•S complex to form product, and to 
regenerate the free enzyme.  A rate law may be predicted from this mechanism, by employing 
the steady state hypothesis, which argues that during the initial period of a reaction, the 
concentration of the intermediates in the reaction will remain roughly constant. 

The derivation of a rate law by the steady state hypothesis proceeds as follows.  First, one notes 
that the rate of product formation can be no faster than the rate of breakdown of the E•S 
complex.  We assign a rate constant to that step, kcat: 

 

€ 

E •S kcat" → " E + P    (eq. K.11) 

That indicates a rate law: 

 v = kcat[E•S]    (eq. K.12) 

This is a valid rate law, except that the concentration of the E•S complex will generally be 
unknown to us, since it is not a compound whose concentration is measured out into solution.  
The compounds whose initial concentration that we do know are the enzyme and substrate.  Thus 
the goal of the steady state hypothesis is to express the concentration of the E•S complex as a 
function of [E] and [S].  To do that, first let’s assign two other microscopic rate constants to the 
reaction: 

 

€ 

E +S k1" → " E •S
E •S k −1" → " E +S

   (eq. K.13) 

This essentially defines a rate constants for the reversible first step of the Michaelis-Menten 
equation.  In so doing, we can obtain rate laws for the consumption and formation of the E•S 
complex. 

 vformation =  k1[E][S]   (eq. K.14) 

 vconsumption = k-1[E•S] + kcat[E•S] (eq. K.15) 

The steady state hypothesis argues that the concentration of E•S is constant over the initial period 
of a reaction.  That means: 

 vformation = vconsumption   (eq. K.16) 

or: 

 k-1[E•S] + kcat[E•S] =  k1[E][S] (eq. K.17) 

Solving for the concentration of E•S, we obtain: 
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[E • S] =
k1[E][S]
k−1 + kcat

   (eq. K.18) 

To simplify this equation, we define the Michaelis constant, Km, as follows: 

 

€ 

Km =
k−1 + kcat
k1

   (eq. K.19) 

Note that this is not an equilibrium constant, but it is a convenient assemblage of rate 
constants, that allows us to express the concentration of E•S in terms of [E] and [S]. 

 

€ 

[E • S] =
[E][S]
Km

   (eq. K.20) 

Now we may provide a rate law for the mechanism in equation K.10.  Using equations K.12 and 
K.20, we obtain: 

 v = 

€ 

kcat
Km

" 

# 
$ 

% 

& 
' [E][S]   (eq. K. 21) 

Note that this predicts a second order rate law just as we saw in equation K.9.  But not really, 
because the concentration of enzyme in equation K.21 is free enzyme, which is only a fraction of 
the enzyme present in solution if some of the enzyme is bound up as E•S.  Thus we need to adapt 
the rate law once further.  We need to solve for rate in terms of total enzyme concentration, [E]tot, 
and substrate concentration. 

 

€ 

[E • S]
[E]tot

=
[E • S]

[E]+ [E • S]
   (eq. K.22) 

Here we are distinguishing between free and bound enzyme.  Substituting from equation K.20, 
we get: 

 

€ 

[E • S]
[E]tot

=

[E][S]
Km

[E]+ [E][S]Km

=
[S]

Km + [S]
 (eq. K.23) 

Which allows us to substitute in a different way for [E•S] in equation K.12: 

 

€ 

v =
kcat[E]tot[S]
Km + [S]

   (eq. K.24) 

This is the so-called Michaelis-Menten equation (though really Briggs and Haldane are 
responsible for applying the steady state assumption).  Remember this equation, and you too may 
be hired to teach biochemistry some day! 
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In any event, the Michaelis-Menten equation successfully predicts the saturation behavior 
observed in Figure K.3.  As [S] grows to large values, it overwhelms the value of Km in the 
denominator and one obtains: 

 Vmax = kcat[E]tot    (eq. K.25) 

What this says, is that v = Vmax when [E•S] = [E]tot.  Maximal velocity is obtained when all of the 
enzyme is saturated with substrate; there is no free enzyme left in solution.  This represents an 
absolute barrier to the rate of reaction. 

Note that we now have four constants that arise from the Michealis-Menten equation:  Vmax, kcat, 
Km and more obliquely, kcat/Km.  Each of these has important interpretations associated with it in 
the analysis of enzyme behavior, and each will be addressed below. 

The Meaning of Vmax 

Well, actually, this has already been given.  It is the maximum rate that can be achieved by an 
enzyme-catalyzed reaction, at a given concentration of enzyme.  Vmax is not a constant for the 
reaction, but rather is a variable that is obtained under certain reaction conditions.  Nevertheless, 
it is important to remember equation K.25 above and its implication of saturation behavior. 

The Meaning of Km 

Km is a tricky kinetic constant.  It is not an equilbrium constant, but it looks just like one, what 
with being a capital “K” and having the following relationship: 

 

€ 

Km =
[E][S]
[E • S]

    (eq. K.26) 

This looks just like a ligand dissociation constant, but it isn’t… quite.  It gives the balance of free 
enzyme and substrate vs. E•S complex under the conditions of the steady state.  But – there are 
circumstances in which Km approximately equals the dissociation constant for the substrate, Kd. 
When kcat is much, much smaller than the rate constant for dissociation of the substrate from the 
enzyme without any reaction, k-1, we obtain from equation K.19: 

 

€ 

Km =
k−1 + kcat
k1

≈
k−1
k1

=Kd   (eq. K.27) 

Note that this is an approximation and that italics are appearing all over the place here to warn 
you not to be too ready to interpret Km as an equilibrium constant.  But often, as we’ll see, kcat is 
smaller than k-1 and equation K.27 holds. 

Graphically speaking, there is another interpretation of Km, which is similar to the graphical 
interpretation of Kd.  Km is the substrate concentration that gives a velocity equal to one-half of 
Vmax: 

 v=1/2Vmax when [S] = Km 
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To see why, revisit the Michaelis-Menten equation (eq. K.24).  When [S] = Km 

 

€ 

v =
kcat[E]totKm

Km +Km

=
1
2
kcat[E]tot   (eq. K.28) 

This means that the graph in Figure K.3 can be used to estimate Km.  Note that Vmax is 0.01 µM/s 
in that plot.  What concentration of substrate gives a velocity of 0.005 µM/s?3 

 Alan Fersht has used this relationship to argue that a well-optimized enzyme will be 
tuned to have a Km value for its substrate that roughly matches the concentration of substrate 
present in the cell.  Why?  If Km were much smaller than the concentration of substrate, then the 
enzyme would be saturated under all conditions. An influx of some metabolite would thus find 
no catalyst available to help convert it.  An enzyme working at maximum velocity is essentially 
falling behind in its work.  Adding more work would be problematic for the cell.  Similarly, if 
Km is much higher than the cellular concentration of a substrate, most of the enzyme is in its free 
state.  That is inefficient because most of the enzyme is being left idle, a waste of resources.  In 
comparing Km values for enzymes with substrate concentrations, Fersht has been able to show an 
approximate relationship (Table K.3). 

Table K.3. Comparison of Km values and substrate concentrations for some 
common enzymes in the cell.4 

Enzyme Substrate [S] (µM) Km (µM) 
Glucose-6-phosphate 
isomerase 

Glucose-6-phosphate 130  210 

Lactate 
dehydrogenase 

Pyruvate 51  59 

Aldolase Fructose-1,6-bisphosphate 32 100 
 

In the future, you will often be tempted to use Km as a measure of how tightly a substrate binds to 
an enzyme active site.  Sometimes that will be OK, but remember that the approximation only 
holds when kcat is much less than k-1. 

The Meaning of kcat – the Turnover Number 

The catalytic rate constant, kcat, is a first order rate constant that gives the frequency of 
decomposition of the E•S complex to products.  Note that its units are inverse time.  Sometimes 
kcat is referred to as the turnover number.  Because Vmax is obtained by equation K.25, one can 
think of kcat as the frequency with which an enzyme, operating at saturation, can convert 
substrate to product – how frequently the enzyme turns over.  This can be very fast, as it turns 

                                                
3 The answer?  Km is 2 µM. 

4 A. Fersht, Structure and Mechanism in Protein Science, Freeman, 1999, pp.. 366-367.  Note that I picked some of 
the better examples for illustrative purposes! 
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out.  Some examples are given in Table K.4 along with the rate constants for the uncatalyzed 
reactions. 

The comparison of kcat to kuncat is a common one, because it compares two rate constants of the 
same molecularity (ie.  usually both are first order rate constants). The explicit comparison is as 
follows (and is diagrammed in Figure K.4): 

 

€ 

S kuncat" → " " P
E •S kcat" → " E + P

   (eq. K.29) 

This comparison provides a useful measure of how much the enzyme is capable of decreasing 
∆G‡ for a given reaction, by allowing that reaction to take place inside the enzyme active site. 
Hence the distinction in Figure K.4 between E•S and E+S. The active site on an enzyme is 
usually a pocket on the surface of the protein into which the substrate is bound.  This 
environment is distinct from bulk water, and is designed to either selectively destabilize the 
substrate with respect to the transition state, or to stabilize the transition state with respect to the 
substrate.  Changing solvents can affect the rate of a reaction, and it might be helpful to think of 
the active site as simply a specialized solvent environment for the moment. 

 

Figure K.4.  Free energy diagram relating the free energy of activation for the 
uncatalyzed process vs. the catalyzed process.  The ∆∆G‡ is the difference in the 
heights of these two arrows.  Note that a large ∆G‡ reflects a small rate constant. 

From a comparison of kcat and kuncat, one can obtain a difference in the free energy of activation, 
∆∆G‡ (see Figure K.4): 

 ∆∆G‡ = -RTln(kcat/kuncat)  (eq. K.30) 
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Where the change in the magnitude of ∆G‡ is determined relative to the uncatalyzed rate constant 
(the reference in this instance).  Some examples are provided in Table K.4. 

Table K.4 Some comparative values for kcat and kuncat and the difference in free energy of 
activation of the catalyzed reaction relative to the uncatalyzed reaction. 

Enzyme kcat (s-1) kuncat (s-1) ∆∆G‡ (kcal/mol) 
Carbonic anhydrase 106 0.13 -9.5 
Cocaine esterase 7.8 1.7 x 10-6 -9.1 
Orotate decarboxylase 39 2.8 x 10-16 -23.4 

 

It is important to note, however, that looking at kcat alone is a poor way to describe the catalytic 
power of an enzyme.  It presupposes that the reaction starts with the E•S complex, and 
completely neglects the impact of substrate binding.  A more complete analysis must include the 
k1 and k-1 rate constants. 

The Meaning of kcat/Km – the Specificity/Efficiency Constant 

Recall equation equation K.21 from above, placed here for your viewing convenience: 

 v = 

€ 

kcat
Km

" 

# 
$ 

% 

& 
' [E][S]   (eq. K. 21) 

This is a second order rate law that describes the rate of reaction between free enzyme and 
substrate to make enzyme and product, as described in equation K.8 (here again with a rate 
constant associated): 

 

€ 

E +S kcat /Km" → " " E + P    (eq. K.30) 

Note that previously, we disallowed further consideration of equation K.21 because it depends 
on the concentration of a species whose concentration may actually unknown to us – that of the 
free enzyme.  But under conditions of low substrate conentration, most enzyme is free enzyme, 
so we can approximate [E] as [E]tot and equation K.21 is easy to apply. Essentially kcat/Km 
describes how effective the catalyst is at converting free substrate to free product – the overall 
rate of the reaction.  As a result, kcat/Km may be called the overall rate constant, or more 
commonly the efficiency constant, since it reports on how efficiently S is converted to P (rather 
than ES to EP, as kcat does). 
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Figure K.5. ∆Goverall
‡ is the difference in free energy from the E+S state to the 

highest point on the reaction coordinate (E•X‡ here).  Note that it can be obtained 
by subtracting the free energy of dissociation of the E•S complex from the free 
energy of activation of the catalyzed process. 

Graphically, kcat/Km is related to the free energy barrier that lies between free substrate and 
product (∆Goverall

‡).  In cases where the catalytic step is rate limiting (that is when ∆Gcat
‡ is larger 

than the barriers for loading substrate onto the enzyme or releasing it from the enzyme), then the 
free energy barrier is measured from the E+S state to the E•X‡ state (Figure K.5).  Note that a 
relationship exists between ∆Goverall

‡ and the ∆Gcat
‡ and the free energy of dissociation of the E•S 

complex: 

 ∆Goverall
‡ = ∆Gcat

‡ - ∆Gdissoc.    (Eq. K.31) 

In cases where the catalytic step is rate limiting, Km approximates the dissociation constant, so 
the following derivation holds: 
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 (Eq. K.32 & then some) 

It’s generally useful to recognize that addition and subtraction of free energies correspond to 
multiplication and division of rate and equilibrium constants. 

One way in which to appreciate the magnitude of kcat/Km values of enzymes is to compare them 
to diffusion rate constants – how fast do two molecules collide with each other.  Certainly, one 
wouldn’t expect enzyme reactions to take place more rapidly than the rate of diffusion, which is 
on the order of 108-109 M-1s-1 for a general enzyme-catalyzed reaction.  In some instances this 
rate is nearly met.  For example, carbonic anhydrase, which catalyzes the reaction of CO2 with 
water: 

 CO2 + H2O → HCO3
- + HO-   (eq. K.33) 

Performs the chemistry with a kcat of 1.0 x 106 s-1 and a Km of 8 mM for CO2.  The efficiency 
constant is 1.3 x 108 M-1s-1, clearly close to the diffusion limit.  In general, values of kcat/Km range 
upwards of 105 M-1s-1, reflecting the extraordinary catalytic efficiency of enzymes. 

Another useful application of kcat/Km is in comparing the efficiency of enzymes with multiple 
substrates.  Neither kcat nor Km are suitable individually in comparisons of catalytic function since 
the former neglects the key substrate binding step and the latter neglects catalysis.  Only kcat/Km 
considers both how well the substrate is bound and how rapidly it is converted from that point on 
to product.  So, consider an enzyme that catalyzes the tranformation of either substrate A or 
substrate B to products: 

 

€ 

E + A kcat /Km( )A" → " " " E + P1
E + B kcat /Km( )B" → " " " E + P2

    (Eq. K.34) 

The relative rates of reaction, assuming that the concentrations of both substrates are equal, is as 
follows: 
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   (Eq. K.35) 

The Meaning of kuncat/(kcat/Km) – The Proficiency Constant5 

 

Figure K.6.  Schematic showing how the ∆Gdissoc. of X‡ is related to the free 
energies associated with the catalytic barrier of the uncatalyzed process and of the 
overall catalyzed process. 

So, finally, how good a catalyst is an enzyme?  Is carbonic anhydrase the greatest enzyme around 
because it catalyzes its reaction at the diffusion limit, or should we identify enzymes that do the 
best job of stabilizing the transition state (looking at ∆∆G‡), neglecting the role of substrate 
binding in catalysis?  The proficiency constant, kuncat/(kcat/Km), provides a comparison that gives 
an absolute value for the binding of the transition state by the enzyme, allowing side-by-side 
comparison of enzymes working on both difficult and easy-to-catalyze reactions.  From Figure 
K.6, it can be seen that the proficiency constant is equivalent to the dissociation constant of X‡ 
from the enzyme active site.  By analogy to the meaning of kcat/Km, we can see from Figure K.6 
that: 

                                                
5 I’m taking this notion from the review by Wolfenden (2001) [Acc. Chem. Res. 34, 938-945], but with a slight 
misappropriation – he uses the inverse of the value I cite as an association constant.  I like it better as a dissociation 
constant. In either form, it is not as broadly used (yet) as kcat /Km but clearly speaks to a fundamental aspect of 
enzymatic catalysis. 
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 ∆Gdissoc.(X‡) = ∆Guncat
‡ - ∆Goverall

‡   (Eq. K.36) 

so that: 

 Kd (X‡) = kuncat/koverall = kuncat/(kcat/Km)   (Eq. K.37) 

In this comparison, carbonic anhydrase is seen (Table K.6) to have a respectable proficiency 
constant, at 10-9 M (that is, the enzyme binds the transition state with nanomolar affinity), but 
orotate decarboxylase, with a kuncat of roughly 10-15 s-1 and a kcat/Km of roughly 108 M-1s-1 has a 
proficiency constant of ~10-23 M.  Now that is some real binding going on there! 

Table K.6.  Examples of proficiency constants for several enzymes.6 

Enzyme kuncat (s-1) kcat (s-1) Km (M) kcat/Km 
(M-1s-1) 

kuncat/(kcat/Km) 
(M) 

Carbonic anhydrase 0.13 1 x 106 0.008 1.3 x 108 1 x 10-9 
Orotate decarboxylase 3.0 x 10-16 39 7.0 x 10-7 5.6 x 107 5 x 10-24 
Cytidine deaminase 3.2 x 10-10 299 1.0 x 10-4 2.9 x 106 1.1 x 10-16 
 

Inhibition 
There are substrates and there are products, and then there are inhibitors – molecules that act to 
block the progress from S to P.  These compounds are of significant interest in the 
pharmaceutical industry since they are capable of blocking undesirable physiological processes – 
such as cholesterol biosynthesis, bacterial cell wall synthesis, retroviral propagation and the like. 
More generally, inhibitors can reveal details of enzyme structure/function relationships. 

Types of Inhibition 

There are three general mechanisms of reversible inhibition that apply to Michaelis-Menten 
kinetics: competitive, non-competitive and uncompetitive (Figure K.7).  Competitive 
inhibition receives its name due to the competition between the substrate and the inhibitor for a 
common binding site.  In non-competitive inhibition, the inhibitor binds equally well to both the 
free enzyme and the enzyme-substrate complex, obviously at a site distinct from the substrate 
binding site.  Non-competitive inhibitors work via allostery, blocking enzyme action from a 
distance.  Uncompetitive inhibition is relatively rare and usually only is found in enzymes that 
bind two substrates (so that the uncompetitive inhibitor competes out the second substrate).  A 
further class of inhibitors are the so-called mixed inhibitors.  Like non-competitive inhibitors, 
they bind to both the free enzyme and E•S complex, but with different equilibrium constants. 

                                                
6 Data taken from Radzicka & Wolfenden (1995) Science 267, 90-93. 
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competitive                               non-competitive                          uncompetitive  

Figure K.7.  Three mechanisms of enzyme inhibition. 

The Kinetics of Competitive Inhibition 

In competitive inhibition, the inhibitor binds reversibly to the enzyme, yielding a dissociation 
constant, Ki (Eq. K.38). 

 E•I ⇔ E + I 

€ 

Ki =
[E][I]
[E • I]

   (Eq. K.38) 

To determine the effect of the inhibitor on the rate of an enzymatic reaction, we need to revisit 
the set-up described in equation K.22, but modify it, recognizing that the enzyme is partitioned 
between three separate species in solution when both substrate and inhibitor are present. 
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[E • S]
[E]tot

=
[E • S]

[E]+ [E • S]+ [E • I]
   (Eq. K.39) 

Subsituting for [E•S] and [E•I], the derivation of the rate law proceeds as follows. 
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(Eq. K.40 and more) 

The parenthetical term (1+[I]/Ki) is often substituted with α for simplicity sake, but I’ll leave it 
alone here.  Again, since the rate of reaction is: 

 v = kcat[E•S] 

We get 
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v =
kcat[E]tot[S]

Km 1+ [I]Ki

" 
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$ % 
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' + [S]

    (Eq. K.41) 

which describes the effect of an inhibitor on the rate of reaction.  As [I] increases, the effect will 
be to reduce the rate of reaction at any given substrate concentration.  However, note carefully 
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that it is still possible to saturate the enzyme with substrate.  It just requires more substrate to 
saturate than when no inhibitor is present (Figure K.8). 
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Figure K.8.  Effect of a competitive inhibitor on rate vs. [S] profiles.  The 
addition of the inhibitor ([I] increases from green to red to blue) causes an 
increase in the amount of substrate required to reach 50% of Vmax, but does not 
change the value of Vmax itself. 

Transition State Analogs as Competitive Inhibitors 

As noted above, competitive inhibitors are often excellent tools for probing the structure of 
enzyme active sites, identifying important interactions necessary to catalysis.  Recall that 
enzymes have evolved to selectively bind the transition state of a desired reaction relative to the 
substrate, thus lowering the free energy of activation.  Thus, molecules that look a great deal like 
the transition state often make the best inhibitors.  We will revisit that point in several enzyme-
specific discussions to come, but it’s worth mentioning a couple of classic cases. 

Cytidine deaminase catalyzes the exchange of a water for ammonia at C4 of the cytosine base in 
its nucleoside, proceeding through a tetrahedral intermediate to form uridine (Figure K.9).  An 
inhibitor with an sp3 center at C4 proves to bind strongly to the active site (Ki = 400 nM) while 
the substrate only binds with a dissociation constant of roughly 100 µM (based on Km).  
Presumably the tighter binding is thanks to selective binding of the tetrahedral conformation at 
C4. 
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Figure K.9. Reaction catalyzed by cytidine deaminase.  At right is a transition 
state analog.  It binds with a Ki of 400 nM. 

Proline racemase is another classic case of inhibition by a transition state analog.  The enzyme 
operates by deprotonating the α carbon, leading to an sp2 center at that carbon.  Inhibitors that 
mimic that planar structure bind more tightly to the enzyme that the substrate does (Figure K.10).  
The Ki of the pyrrole is 14 µM, while the dissociation constant for proline (estimated from the 
Km) is roughly 2 mM. 
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Figure K.10.  Reaction catalyzed by proline racemase.  The sp2 center of the high 
energy intermediate is mimicked by the pyrrole ring at right.  That compound acts 
as a competitive inhibitor with a Ki of 14 µM. 


