Review for 1st Exam - Chem 391 - Fall 2018

Intermolecular Forces and Thermodynamics

$\Delta \mathrm{G}=\Delta \mathrm{H}=-\mathrm{T} \Delta \mathrm{S}$ and $\mathrm{K}_{\mathrm{eq}}=\exp \left(-\Delta \mathrm{G}^{\circ} / \mathrm{RT}\right)$

$$
\mathrm{R}=0.001987 \mathrm{kcal} / \mathrm{mol} \mathrm{~K}, \mathrm{~T} \text { is in Kelvin }\left(0^{\circ} \mathrm{C}=273 \mathrm{~K}\right)
$$

Calculation and meaning of $\Delta \Delta \mathrm{G}^{\circ}$
Enthalpy = Intermolecular forces, Entropy = Disorder
Intermolecular forces: Relative strengths, appropriate geometries
Contributions to entropy - Hydrophobic Effect especially

Lipids

Fatty acid nomenclature, familiarity with phospholipid structure
Micelles vs vesicles, thermodynamics of aggregation
CMC vs. structure
Protocell paper

Amino Acid Structure \rightarrow Quaternary Structure

Know the 20. Chemistry (especially acid-base) and Structure
Conformational flexibility of the backbone (Ramachandran plot)
Basic features of secondary structure, stabilization and geometry
Hydrophobic core in 3° structure stabilization
Determination of protein stability by thermal melts, denaturant titrations
Stapled Helix Paper, FlAsH labeling paper

Physical Methods

Fluorescence Spectroscopy - As a monitor of protein folding, 3° structure \& FRET
Circular Dichroism - understand how it is used, what info it gives
NMR - Basics of COSY and NOESY. Model interpretation.
Crystallography - Resolution, R-factor, stereochemical "goodness"
Switch Arc paper

Nucleic Acid Structure

Memorize the six bases A,G,I (purines) and C,T,U (pyrimidines)
Nucleosides and nucleotides, primary structure of nucleic acids
Ribose/deoxyribose, open chain and furanose forms
Contributions towards double helix stability (base stacking!)
Major Groove vs. Minor Groove
A conformation vs. B conformation in DNA/RNA
Hydration and base composition and their effects
RNA secondary and tertiary structure
DNA Origami paper

Receptor-Ligand Interactions

The algebra and plotting
Predicting ligand binding interactions (biotin/avidin, steroid receptors)
RNA Aptamers
Protein-DNA interactions. Direct and indirect readout. Major groove interactions.
Allosteric control of DNA-binding activity (TrpR)

