Review for 1st Exam - Chem 391 - Fall 2018

Intermolecular Forces and Thermodynamics $\Delta G = \Delta H = -T\Delta S \text{ and } K_{eq} = \exp(-\Delta G^{\circ}/RT)$ R = 0.001987 kcal/mol K, T is in Kelvin (0 °C = 273 K)Calculation and meaning of $\Delta\Delta G^{\circ}$ Enthalpy = Intermolecular forces, Entropy = Disorder Intermolecular forces: Relative strengths, appropriate geometries Contributions to entropy – **Hydrophobic Effect** especially

Lipids

Fatty acid nomenclature, familiarity with phospholipid structure Micelles vs vesicles, thermodynamics of aggregation CMC vs. structure Protocell paper

Amino Acid Structure \rightarrow Quaternary Structure

Know the 20. Chemistry (especially acid-base) and Structure Conformational flexibility of the backbone (Ramachandran plot) Basic features of secondary structure, stabilization and geometry Hydrophobic core in 3° structure stabilization Determination of protein stability by thermal melts, denaturant titrations Stapled Helix Paper, FlAsH labeling paper

Physical Methods

Fluorescence Spectroscopy - As a monitor of protein folding, 3° structure & FRET Circular Dichroism - understand how it is used, what info it gives NMR – Basics of COSY and NOESY. Model interpretation. Crystallography - Resolution, R-factor, stereochemical "goodness" Switch Arc paper

Nucleic Acid Structure

Memorize the six bases A,G,I (purines) and C,T,U (pyrimidines) Nucleosides and nucleotides, primary structure of nucleic acids Ribose/deoxyribose, open chain and furanose forms Contributions towards double helix stability (base stacking!) Major Groove vs. Minor Groove

A conformation vs. B conformation in DNA/RNA

Hydration and base composition and their effects

- RNA secondary and tertiary structure
- DNA Origami paper

Receptor-Ligand Interactions

The algebra and plotting Predicting ligand binding interactions (biotin/avidin, steroid receptors) RNA Aptamers Protein-DNA interactions. Direct and indirect readout. Major groove interactions. Allosteric control of DNA-binding activity (TrpR)