
Eric Roberts Handout #34
CSCI 121 October 12, 2018

Files

Files

Eric Roberts
CSCI 121

October 12, 2018

File Systems and the Multics Project
•  Today, everyone who works with

computers is familiar with the idea
of a hierarchical file system in
which information is stored in a tree
of files and directories.

•  The hierarchical file system model
was invented for a system called
Multics (Multiplexed Information
and Computing System), developed
jointly by MIT under the direction
of Fernando Corbató, Bell Labs,
and General Electric in the 1960s.

Fernando Corbató (1926–)

Reading Data from Files
•  Applications that work with arrays and array lists often need

to work with lists that are too large to enter by hand. In many
cases, it is easier to read the values of a list from a data file.

•  A file is the generic name for any named collection of data
maintained on the various types of permanent storage media
attached to a computer. In most cases, a file is stored on a
hard disk, but it can also be stored on a removable medium,
such as a CD or flash memory drive.

•  Files can contain information of many different types. The
most common type of file—and the only type we’ll consider
in this class—is a text file, which contains character data of
the sort you find in a string.

Text Files vs. Strings

The information stored in a file is permanent. The value of a string
variable persists only as long as the variable does. Local variables
disappear when the method returns, and instance variables disappear
when the object goes away, which typically does not occur until the
program exits. Information stored in a file exists until the file is
deleted.

1.

Files are usually read sequentially. When you read data from a file,
you usually start at the beginning and read the characters in order,
either individually or in groups that are most commonly individual
lines. Once you have read one set of characters, you then move on
to the next set of characters until you reach the end of the file.

2.

Although text files and strings both contain character data, it is
important to keep in mind the following important differences
between text files and strings:

Reading Text Files
•  The standard paradigm for reading a text file begins uses the

following code to open the file and associate it with a variable
used as its file handle:

with open(filename) as variable:
 Code to read the file using variable as the handle.

•  The with statement, which you will learn more about later in
the semester, ensures that the resources associated with the file
are released when Python reaches the end of the with body.

•  Python offers several strategies for reading data from a file:
–  Reading the entire file as a string using the read method.
–  Reading lines from a files using readline or readlines.
–  Using the file handle as an iterator.
–  Using the read method together with splitlines.

Reading an Entire File as a String
•  In many ways, the simplest strategy for reading a file is to use

the read method, which reads the entire file as a string, with
embedded newline characters (\n) to mark the ends of lines.

•  For example, if Seuss.txt is the file

calling read reads the entire file into a string like this:

One fish
two fish
red fish
blue fish.

O n e f i s h \n t w o f i s h \n r e d f i s h \n b l u e f i s h . \n

•  A potential downside to this approach is that reading an entire
file into a string can require a large amount of memory.

– 2 –

Reading One Line at a Time
•  Python offers several methods for reading a line from a file:

–  The readline method reads the next line with its newline.
–  The readlines method reads lines (with newlines) into a list.
–  The file handle can be used as an iterator.

•  The problem with all of these strategies is that the newline
character is included as part of the line, which is almost never
what you want as a client.

with open(filename) as f:
 for line in f:
 Code to process the line.

•  Of these, the last strategy is almost certainly the best and leads
to the following idiom:

Finding the Longest Line in a File
•  As long as you are working with files of modest size, the

simplest way to read a file as a list of lines is to combine the
read method from the file class with the splitlines method
from the string class, as follows:

•  The advantage of this approach is that splitlines strips the
newline characters from the end of each line.

with open(filename) as f:
 lines = f.read().splitlines()
 Code to process the lines of the file.

Writing Text Files
•  Python makes it possible to write new files using a code

pattern that mirrors the one for reading:

with open(filename, mode) as variable:
 Code to write the file using variable as the handle.

•  The difference between this pattern and the one for reading a
file is the inclusion of a mode parameter, which is either the
string "w" to write a new file (or overwrite an existing one) or
"a" to its current contents.

•  The body of the with statement includes calls to the write
and writelines methods to write string data to the file.

Exception Handling
•  When you are opening a file for reading, it is possible that the

file does not exist. Python handles this situation—and many
other errors or events that occur during execution—using a
mechanism called exception handling, which has become a
standard feature of modern programming languages.

•  In Python, an exception is an instance of a class that is part of
hierarchy of exception classes. This hierarchy contains many
exception types used for different purposes. File operations,
for example, use the exception class IOError.

•  If the open function encounters an error, such as a missing
file, it reports the error by raising an exception using IOError
as its exception type. Raising an exception terminates
execution unless your program includes a try statement to
handle that exception, as described on the next slide.

The try Statement
•  Python uses the try statement to indicate an interest in

handling an exception. In its simplest form, the syntax for the
try statement is

•  The range of statements in which the exception can be caught
includes not only the statements enclosed in the try body but
also any functions those statements call. If the exception
occurs inside some other functions, any nested stack frames
are removed until control returns to the try statement itself.

try:
 Code in which exceptions may occur.
except type:
 Code to handle the exception.

where type is the class name of the exception being handled.

Requesting an Existing File
•  The following function repeatedly asks the user to supply the

name of an existing file until the file can be opened for input:

•  If the open call succeeds, the body of the with statement
simply returns the filename without reading any data. If an
IOError exception occurs, the except clause prints an error
message and returns to the while loop to try again.

def getExistingFile(prompt="Input file: "):
 while True:
 filename = input(prompt)
 try:
 with open(filename):
 return filename
 except IOError:
 print("Can't open that file")

– 3 –

Choosing Files Interactively
•  The Python package used to implement pgl.py also supports

a mechanism to choose files interactively, which is available
through the filechooser.py library module.

•  This library exports two functions—chooseInputFile and
chooseOutputFile—for selecting a file.

•  Both functions bring up a file dialog that allows the user to
select a file.
–  Clicking Open or Save returns the full pathname of the file.
–  Clicking Cancel returns the empty string.

•  The following paradigm shows the use of chooseInputFile:

filename = chooseInputFile()
with open(filename) as f:
 Code to read the file.

Using Arrays for Tabulation
•  Arrays turn out to be useful when you have a set of data

values and need to count how many values fall into each of a
set of ranges. This process is called tabulation.

•  Tabulation uses arrays in a slightly different way from those
applications that use them to store a list of data. When you
implement a tabulation program, you use each data value to
compute an index into an array of integers that keeps track of
how many values fall into that category.

•  The example of tabulation used in the text is a program that
counts how many times each of the 26 letters appears in a
sequence of text lines. Such a program would be very useful
in decoding a letter-substitution ciphers, such as the one from
Edgar Allan Poe’s short story “The Gold Bug” described
earlier in class.

Implementation Strategy
The basic idea behind the program to count letter frequencies is
to use an array with 26 elements to keep track of how many times
each letter appears. As the program reads the text, it increments
the array element that corresponds to each letter.

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

G I L L I R B S A W

T
1

Code to Count Letter Frequencies

Code to Count Letter Frequencies Adding a File Chooser

