Eric Roberts Handout #24
CSCI 121 October 1, 2018

Exam Strategies and Tactics

This handout is minimally adapted from one written by my Stanford colleague Julie Zelenski

The exams in an introductory computer science course can be challenging and even a bit
intimidating. Although you may have been keeping up in lecture and doing well on the
assignments, you may still be unsure of how your skills will translate to the exam setting.
The practice midterms give you an idea of what to expect, and this handout gives some
sage advice gathered from our current and past staff members. We hope you will find
our tips useful when preparing for and conquering this upcoming challenge!

The rationale behind pencil and paper exams

Students often suggest that exams should be done more like assignments: using a
computer, allowing the use of web-based documentation, being able to run, test, and
debug, and so forth. The logistics of an online exam add serious challenges in terms of
fairness and security, but we have experimented with online exams in the past. We
abandoned those experiments because students did substantially less well on the exams.
For a start, much valuable time was lost to dorking with details (proper import lines and
minor syntax issues) that we don’t even count in an exam situation.

In a time-restricted situation, immediate feedback from the compiler can be more of an
impediment than an advantage. Imagine yourself in this situation: you read the first
problem, have a good idea how to solve it, write your solution, and trace its operation and
feel good. In a paper exam, you then move on to the next problem. In an online exam,
you compile and test it. Suppose it exhibits a bug. Even though it may only be a minor
issue, you can see your answer is wrong so you hunker down and rework and retest until
perfect. Writing your first solution took 20 minutes and would have earned, say, 17 of 20
points. You spent another 20 minutes debugging to earn those remaining 3 points. Bad
deal! The rest of your exam also suffers because you used up so much time. We have
had students who never made it past the first or second problem in an online exam.
Being confronted with clear evidence of bugs made it impossible to move on. We tried
again and warned students about this effect, but resistance was futile. Given the limited
time available, we want you to write your best answer and move on; paper seems to be
the means to encourage exactly that.

We know that writing on paper is not the same as working with a compiler, and we
account for that in how we design and grade the exam. We are assessing your ability to
think logically and use appropriate problem-solving techniques. We expect you to
express yourself in reasonably correct Python, but we will be quite lenient with errors
that are syntactic rather than conceptual.

How to prepare for the exam

* “Open book” doesn’t mean “don’t study.” The exam is open-book/open-notes and
you can bring along your notes from lecture, course handouts, and printouts of all your
assignments. There will also be printed copies of the reader available for reference.



_2_

We don’t expect you to memorize minute details, and the exam will not focus on them.
However, this doesn’t mean you shouldn’t prepare. There certainly isn’t enough time
during the exam to learn the material. To do well, you must be experienced at
working problems efficiently and accurately without needing to repeatedly refer to
your resources.

Practice, practice, practice. A good way to study for the programming problems is to
take a problem (lecture or section example, chapter exercise, sample exam problem)
and write out your solution under test-like conditions on a blank sheet of paper using a
pencil with a short amount of time. This is much more valuable than a passive review
of the problem and its solution where it is too easy to conclude “ah yes, I would have
done that” only to find yourself adrift during the real exam when there is no provided
solution to guide you!

Get your questions answered. 1f there is a concept you’re a bit fuzzy on, or you’d like
to check your answer to a chapter exercise, or you wonder why a solution is written a
particular way, get those questions answered before the exam. Come to office hours or
send an email. We’re happy to help.

How to take the exam

Scan the entire exam first. Quickly peruse all questions before starting on any one.
This allows you to “multi-task™; as you are writing the more mundane parts of one
answer, your mind can be brainstorming strategies or ideas for another problem in the
background. You can also sketch out how to allocate your time between questions in
the first pass.

Spend your time wisely. There are only a handful of questions, and each is worth a
significant amount. Don’t get stuck on any particular problem. There is much
opportunity for partial credit, so it’s better to make good efforts on all problems than to
perfect an answer to one while leaving others untouched.

Consider the point value of each question. Divide the total minutes by the total
number of points to figure the time per point and use that as guide when allocating
your time across the problems. You may want to reserve a little time for checking
your work at the end as well.

Leverage the tools you have. If you know of a function in the reader or a handout that
would help, you can simply use it on the exam. You do not need to rewrite it. If you
have a function you wrote for an assignment that you would like to use, you can copy
it from your assignment printouts, which is why we suggest you bring them.

Style and decomposition are secondary to correctness. Unlike the assignments where
we hold you to high standards in all areas, the correctness of the answers dominates
the grading of an exam. Decomposition and style are thus somewhat deemphasized.
However, good design may make it easier for you to get the functionality correct and
require less code, which takes less time and has fewer opportunities for error.
Comments are never required unless specifically indicated by a problem. When a
solution is incorrect, commenting may help us determine what you were trying to do
and award partial credit.

Answer in pseudocode, but only if you must. If the syntax of Python is somehow in
your way, you can answer in pseudocode for partial credit. There is a wide variation



_3_

in the scoring for psuedocode. Some pseudocode is vague and content-less and does
little more than restate the problem description (“I would find all Pythagorean triples”)
and thus is worth nothing. The more details your pseudocode provides, the better. We
typically award at most half of the points for perfect psuedocode precisely describing a
correct algorithm. But truthfully, good pseudocode contains so much information that
it would have been easier and more concise to just write in Python in the first place.

Pay attention to specific instructions. A problem statement may include detailed
constraints and hints such as “you do not have to get the animation to stop” or “you
may assume that the string contains at least two characters.” You may want to
underline or highlight these instructions to be sure you don’t overlook them. These
constraints are not intended to make things difficult; typically we are trying to guide
you in the direction of a straightforward and simple solution. If you disregard these
instructions, you are likely to lose points, either for not meeting the problem
specification and/or for introducing errors when attempting a convoluted alternative.

Syntax is not that important if it is clear what you mean. We won’t trouble you
about most syntax as long as your intentions are clear. But if there is ambiguity in
your attempt, correct syntax can help us get the correct meaning. For example, if we
see a for statement followed by two lines, where both lines are vaguely indented or a
third line has been added in after the fact, we may be confused.

Write in pencil. CS exams done in pen are often messy and difficult to grade. Your
first draft may have “typos” (e.g., missing arguments in function call, statements out of
order). In pencil, you can easily erase to make the necessary corrections; in pen, it is
hard to make such changes and still keep your intentions clear.

Cross out abandoned attempts rather than erase them. As is usually the case on a CS
exam, you will have false starts on a problem. You try one strategy and hit a dead end.
You try something else and then realize you actually were closer to the right solution
the first time. If you haven’t erased your first attempt, you can always go back to it.
Once you work out a better answer, cross out your earlier attempt. When you cross
out work, please direct us to where you have written the solution you want graded
instead.

Save a little time for checking your work. Before handing in your exam, reserve a
few minutes to go back over your work. Check for missing initialization/return
statements, correct parameters passed to functions, etc. We try not to deduct points for
minor things if it is obvious what you meant (although there are fewer pitfalls in
Python than there are in most languages), but sometimes it is difficult to decipher your
true intention. You might save yourself a few lost points by tidying up the details at
the end.

Good luck!



