The GObject Hierarchy

Expanding the GObject Hierarchy

The GArc Class

- The GArc class represents an arc formed by taking a section from the perimeter of an oval.
- Conceptually, the steps necessary to define an arc are:
 - Specify the coordinates and size of the bounding rectangle.
 - Specify the start angle, which is the angle at which the arc begins.
 - Specify the sweep angle, which indicates how far the arc extends.
- The geometry used by the GArc class is shown in the diagram on the right.
- In keeping with the graphics model, angles are measured in degrees starting at the +x axis (the 3:00 o’clock position) and increasing counterclockwise.
- Negative values for the start and sweep angles signify a clockwise direction.

Exercise: GArc Geometry

- Suppose that the variables cx and cy contain the coordinates of the center of the window and that the variable d is 0.9 times the screen height. Sketch the arcs that result from each of the following code sequences:

  ```java
  a1 = GArc(d, d, 0, 90);
  gw.add(a1, cx - d/2, cy - d/2);
  a2 = GArc(d, d, 45, 270);
  gw.add(a2, cx - d/2, cy - d/2);
  a3 = new GArc(d, d, -90, 45);
  gw.add(a3, cx - d/2, cy - d/2);
  a4 = new GArc(d, d, 0, -180);
  gw.add(a4, cx - d/2, cy - d/2);
  ```

Filled Arcs

- The GArc class is a GFillableObject, which means that you can call setFilled on a GArc object.
- A filled GArc is displayed as the pie-shaped wedge formed by the center and the endpoints of the arc, as illustrated below:

  ```java
  def FilledEllipticalArc():
  gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT)
  arc = GArc(0, 0, gw.getWidth(), gw.getHeight(), 0, 90)
  arc.setFilled(True)
  gw.add(arc)
  ```

Additional Methods for GArc

- These methods allow you to animate the appearance of an arc.
- The setStartAngle and setSweepAngle methods make it possible to change the starting position and the extent of the arc dynamically.
- The setFrameRectangle method changes the bounds of the rectangle circumscribing the oval from which the arc is taken.
Exercise: PacMan

• Write a program that uses the GaRe class to display a PacMan figure at the left edge of the graphics window.
• Add the necessary timer animation so that PacMan moves to the right edge of the window. As it moves, your program should change the start and sweep angles of the arc so that the mouth appears to open and close.

Questions about the PacMan Problem

• We’re going to divide into groups and spend the next five minutes discussing important questions you would need to answer while solving the PacMan problem. Each group will discuss one of the following four questions:
 1. How would you create the initial PacMan object at the left of the window?
 2. What needs to happen on each time step?
 3. How do you get the program to stop?
 4. How would you design milestones that would allow you to test the program in pieces?

The GPolygon Class

• The GPolygon class is used to represent graphical objects bound by line segments. In mathematics, such figures are called polygons and consist of a set of vertices connected by edges. The following figures are examples of polygons:
 - diamond
 - regular hexagon
 - five-pointed star

• Unlike the other shape classes, the location of a polygon is not fixed at the upper left corner. What you do instead is pick a reference point that is convenient for that particular shape and then position the vertices relative to that reference point.
• The most convenient reference point is often the geometric center of the object.

Constructing a GPolygon Object

• The GPolygon function creates an empty polygon. Once you have the empty polygon, you then add each vertex to the polygon, one at a time, until the entire polygon is complete.
• The most straightforward way to create a GPolygon is to call the method addVertex(x, y), which adds a new vertex to the polygon. The x and y values are measured relative to the reference point for the polygon rather than the origin.
• When you start to build up the polygon, it always makes sense to use addVertex(x, y) to add the first vertex. Once you have added the first vertex, you can call any of the following methods to add the remaining ones:
 - addVertex(x, y) adds a new vertex relative to the reference point
 - addEdge(dx, dy) adds a new vertex relative to the preceding one
 - addPolarEdge(r, theta) adds a new vertex using polar coordinates

Using addVertex and addEdge

• The addVertex and addEdge methods each add one new vertex to a GPolygon object. The only difference is in how you specify the coordinates. The addVertex method uses coordinates relative to the reference point, while the addEdge method indicates displacements from the previous vertex.
• Your decision about which of these methods to use is based on what information you have readily at hand. If it is easy to calculate the vertices, addVertex is probably the right choice. If it is easy to describe the edges, addEdge makes more sense.
• No matter which of these methods you use, the GPolygon class closes the polygon before displaying it by adding an edge from the last vertex back to the first one, if necessary.
• The next two slides show how to construct a diamond-shaped polygon using the addVertex and the addEdge strategies.

DrawDiamond using addVertex

```python
def createDiamond(width, height):
    diamond = GPolygon()
    diamond.addVertex(-width / 2, 0)
    diamond.addVertex(-width / 2, height)
    diamond.addVertex(width / 2, height)
    diamond.addVertex(width / 2, 0)
    return diamond
```

width height

diamond

DrawDiamond
DrawDiamond using addEdge

```python
def createDiamond(width, height):
diamond = GPolygon() 
diamond.addVertex(width / 2, 0)
diamond.addEdge(width / 2, -height / 2)
diamond.addVertex(width / 2, height / 2)
diamond.addEdge(-width / 2, -height / 2)
diamond.addVertex(-width / 2, height / 2)
diamond.addEdge(-width / 2, -height / 2)
return diamond
```

Using addPolarEdge

- In many cases, you can determine the length and direction of a polygon edge more easily than you can compute its x and y coordinates. In such situations, the best strategy for building up the polygon outline is to call `addPolarEdge(r, theta)`, which adds an edge of length r at an angle that extends θ degrees counterclockwise from the $+x$ axis, as illustrated by the following diagram:

 ![Diagram](image)

- The name of the method reflects the fact that `addPolarEdge` uses what mathematicians call *polar coordinates*.

The DrawHexagon Program

```python
def createHexagon(side):
hex = GPolygon()
hex.addVertex(0, 0)
for i in range(6): 
  hex.addPolarEdge(side, angle)
  angle += 60
return hex
```

Creating Compound Objects

- The `GCompound` class in the Portable Graphics Library makes it possible to combine several graphical objects so that the resulting structure behaves as a single `GObject`.
- The easiest way to think about the `GCompound` class is as a combination of a `GWindow` and a `GObject`. A `GCompound` is like a `GWindow` in that you can add objects to it, but it is also like a `GObject` in that you can add it to a canvas.
- As was true in the case of the `GPolygon` class, a `GCompound` object has its own coordinate system that is expressed relative to a *reference point*. When you add new objects to the `GCompound`, you use the local coordinate system based on the reference point. When you add the `GCompound` to the canvas as a whole, all you have to do is set the location of the reference point; the individual components will automatically appear in the right locations relative to that point.

The DrawCrossedBox Program

```python
def createCrossedBox(w, h):
box = GCompound()
box.add(GLine(-w / 2, -h / 2, w, h))
box.add(GLine(w / 2, -h / 2, w / 2, h / 2))
box.add(GLine(-w / 2, h / 2, w / 2, h / 2))
return box
```

Once upon a time . . .
National Cancer Institute in Panama

- In November 2000, 28 patients at the Instituto Oncológico Nacional (ION) in Panama City received significant overdoses resulting from data entry errors on the institute’s Treatment Planning System. By 2004, 21 of those patients had died.
- In addition to being more deadly in its effects than any similar failure in the United States, the incident in Panama is fascinating because understanding the details of the software problem requires familiarity with the subtleties of graphical algorithms for recognizing the interior of a polygon.

Shielding Blocks

- The purpose of the Treatment Planning System (TPS) is to help doctors determine the radiation doses and treatment times for each cancer case, which depend, of course, on the size and location of the cancer mass in the body.
- As with many other cancer-treatment systems, the Panama City TPS also allowed doctors—by drawing on a display screen—to specify the location of shielding blocks that would be placed on the body to protect vital organs from radiation.
- The TPS at this facility allowed a maximum of four blocks, but the doctors often needed more. They discovered that it was possible to get the picture they wanted on the screen by drawing a large block and then drawing a second block inside it that would remove part of that area. Because it was faster, doctors began to use this technique even for four blocks.

Illustration of Block Placement

- Suppose that you want to specify the block pattern shown at the right.
- One approach is simply to draw the four triangles.
- The optimization the doctors found, which requires fewer blocks and often allowed them to circumvent the limit of four blocks, was to perform the following steps:
 - Draw a rectangle over the full area.
 - “Erase” the interior octagonal region.
- The success of this shortcut procedure depends on the direction in which the inner region is drawn.

Findings of the Investigative Report

From August 2000 onwards, data for multiple blocks were entered for a number of cases using the new method when calculating exposures of the pelvic region, even when a fifth shielding block was not required. Treatments of other regions of the body which required blocks were still calculated by digitizing each block separately.

Since the procedure was not put in writing, the shortcut was apparently used in a slightly different way for some patients. In these cases, the blocks were digitized by following the inner boundaries of the blocks in one direction, and the outer boundaries in the opposite direction. It was later found that this method of data entry did not lead to an incorrect treatment time. The treatment times calculated with this method later turned out to be essentially correct.

Determining the Interior of a Region

For a simple path, it is intuitively clear what region lies inside. However, for a more complex path—for example, a path that intersects itself or has one subpath that encloses another—the interpretation of “inside” is not always obvious.

The nonzero winding number rule determines whether a given point is inside a path by conceptually drawing a ray from that point to infinity in any direction and then examining the places where a segment of the path crosses the ray. Starting with a count of 0, the rule adds 1 each time a path segment crosses the ray from left to right and subtracts 1 each time a segment crosses from right to left. After counting all the crossings, if the result is 0 then the point is outside the path; otherwise it is inside.

The Problem of Complex Paths

The more interesting cases are those involving complex or self-intersecting paths. For a path composed of two concentric circles, the areas enclosed by both circles are considered to be inside, provided that both are drawn in the same direction. If the circles are drawn in opposite directions, only the “doughnut” shape between them is inside, according to the rule; the “doughnut hole” is outside.