Putnam Practice Problems October 11, 2009

- 1. Let a_1, a_2, \ldots, a_n be distinct positive integers and let M be a set of n-1 positive integers not containing $s = a_1 + a_2 + \ldots + a_n$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths a_1, a_2, \ldots, a_n in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M. (International Mathematics Olympiad Bremen 2009)
- 2. Consider the power series expansion

$$\frac{1}{1 - 2x - x^2} = \sum_{n=0}^{\infty} a_n x^n.$$

Prove that, for each integer $n \ge 0$, there is an integer m such that $a_n^2 + a_{n+1}^2 = a_m$. (A3 on Putnam 1999)

3. Let N be the positive integer with 1998 decimal digits, all of them 1; that is,

$$N = 1111 \cdots 11.$$

Find the thousandth digit after the decimal point of \sqrt{N} . (B5 on Putnam 1998)

4. Find all differentiable functions $f: (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0. (B3 on Putnam 2005)