BLOWING UP THE PCMI 2008 T-SHIRT

STEFAN SABO

1. Introduction

This paper was written during the Park City Mathematics Institute 2008 Summer Session. On the back of the conference t-shirt was depicted the surface "Seepferdchen," which is the German word for "Seahorse," given by the equation $p\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}^{2}-x_{1}^{3}\right)^{2}-\left(x_{0}+x_{1}^{2}\right) x_{2}^{3}=0$. This surface has noticeable singularities, and so I decided to resolve them using standard blow-up methods as will be shown. Surprisingly, the resolution required four blow-ups in total. The computing power of Mathematica and $C o C o A$ significantly aided in the process. I would like to thank Herb Clemens for initiating the project and formalizing the first blow-up and David Perkinson, who helped with the calculations and provided pictures.

2. Resolving The Singularity

2.1. First Blow-Up. Call the surface of interest W and define it by

$$
W: p\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}^{2}-x_{1}^{3}\right)^{2}-\left(x_{0}+x_{1}^{2}\right) x_{2}^{3}=0
$$

To find the singularities, we must find the locus of points for which the curve and all its partial derivatives simultaneously vanish.

$$
\begin{aligned}
\frac{\partial p}{\partial x_{0}} & =4 x_{0}\left(x_{0}^{2}-x_{1}^{3}\right)-x_{2}^{3}=0 \\
\frac{\partial p}{\partial x_{1}} & =-6 x_{1}^{2}\left(x_{0}^{2}-x_{1}^{3}\right)-2 x_{1} x_{2}^{3}=0 \\
\frac{\partial p}{\partial x_{2}} & =-3\left(x_{0}+x_{1}^{2}\right) x_{2}^{2}=0
\end{aligned}
$$

These equations imply that $x_{2}=0$ and $x_{0}^{2}-x_{1}^{3}=0$, so let

$$
\begin{aligned}
& p_{0}\left(x_{0}, x_{1}, x_{2}\right)=x_{0}^{2}-x_{1}^{3} \\
& p_{1}\left(x_{0}, x_{1}, x_{2}\right)=x_{2}
\end{aligned}
$$

Date: July 23, 2008.
be the defining equations for the singularity $Z \subset W$. The blow-up B_{Z} is then subject to the constraint

$$
\left\{\left|\begin{array}{cc}
y_{0} & y_{1} \\
p_{0} & p_{1}
\end{array}\right|=0\right\}
$$

We find that our equation for B_{Z} is

$$
y_{0} p_{1}-y_{1} p_{0}=y_{0}\left(x_{2}\right)-y_{1}\left(x_{0}^{2}-x_{1}^{3}\right)=0
$$

Now we may rewrite W in terms of p_{0} and p_{1} using the relation $p_{1}=p_{0} y_{1} / y_{0}$ for $y_{0} \neq 0$.

$$
\begin{aligned}
p_{0}^{2}-\left(x_{0}+x_{1}^{2}\right) p_{1}^{3} & =y_{0}^{3} p_{0}^{2}-\left(x_{0}+x_{1}^{2}\right) p_{0}^{3} y_{1}^{3} \\
& =p_{0}^{2}\left(y_{0}^{3}-\left(x_{0}+x_{1}^{2}\right) p_{0} y_{1}^{3}\right)=0
\end{aligned}
$$

Let \tilde{W} denote the pre-image of W upstairs. It is given in B_{Z} by

$$
y_{0}^{3}-\left(x_{0}+x_{1}^{2}\right) p_{0} y_{1}^{3}=0
$$

To begin the blow-up we must consider the different coordinate charts. First let us consider the chart $\mathbb{C}^{3} \times \mathbb{P}^{1}$ with coordinates $\left\{\left(x_{0}, x_{1}, x_{2}\right),\left[y_{0}: y_{1}\right]\right\}$ defined by letting $y_{0}=1$. Then our equation in \tilde{W} becomes

$$
1-\left(x_{0}+x_{1}^{2}\right) p_{0} y_{1}^{3}=0
$$

This equation is free of singularities, therefore we consider the chart $\mathbb{C}^{3} \times \mathbb{P}^{1}$ defined by letting $y_{1}=1$. Then the relation becomes $p_{0}=p_{1} y_{0}$ together with the equation $p_{0}^{2}-\left(x_{0}+x_{1}^{2}\right) p_{1}^{3}=0$ characterizing W. We now substitute as follows

$$
\begin{aligned}
p_{0}^{2}-\left(x_{0}+x_{1}^{2}\right) p_{1}^{3} & =0 \\
\left(p_{1} y_{0}\right)^{2}-\left(x_{0}+x_{1}^{2}\right) p_{1}^{3} & =0 \\
p_{1}^{2}\left(y_{0}^{2}-\left(x_{0}+x_{1}^{2}\right) p_{1}\right) & =0
\end{aligned}
$$

Finally we can explicitly state defining equations for \tilde{W} on our chart $\mathbb{C}^{3} \times \mathbb{P}^{1}$ where $y_{1}=1$.

$$
\begin{aligned}
q_{0}\left(x_{0}, x_{1}, x_{2}, y_{0}\right) & =p_{0}-p_{1} y_{0} \\
& =\left(x_{0}^{2}-x_{1}^{3}\right)-x_{2} y_{0}=0 \\
q_{1}\left(x_{0}, x_{1}, x_{2}, y_{0}\right) & =y_{0}^{2}-\left(x_{0}+x_{1}^{2}\right) x_{2}=0
\end{aligned}
$$

These equations define the blow up, \tilde{W}, of the original surface in the coordinate chart given by $y_{1}=1$. A point $p:=\left(x_{0}, x_{1}, x_{2}, y_{0}\right) \in \tilde{W}$ is singular if

$$
\left.\operatorname{rank}\left(\begin{array}{lll}
\left.\frac{\partial q_{0}}{\partial x_{0}}\right|_{p} & \left.\frac{\partial q_{0}}{\partial x_{1}}\right|_{p} & \left.\frac{\partial q_{0}}{\partial x_{2}}\right|_{p} \\
\left.\frac{\partial q_{0}}{\partial y_{0}}\right|_{p} \\
\left.\frac{\partial q_{1}}{\partial x_{0}}\right|_{p} & \left.\frac{\partial q_{1}}{\partial x_{1}}\right|_{p} & \left.\frac{\partial q_{1}}{\partial x_{2}}\right|_{p} \\
\left.\frac{\partial q_{1}}{\partial y_{0}}\right|_{p}
\end{array}\right]\right)<2
$$

Using CoCoA, we find two additional singular points, namely $(0,0,0,0)$ and $(-1,1,0,0)$ both in \tilde{W}. Therefore, we must blow-up again at these two points. It would be optimal to work with only one defining equation instead of both q_{0} and q_{1}. Notice that if we solve q_{0} and q_{1} for x_{2} and then set them equal, we are able to get the new defining equation

$$
\left(x_{0}^{2}-x_{1}^{3}\right)\left(x_{0}+x_{1}^{2}\right)=y_{0}^{3}
$$

To eliminate the writing of subscripts we change notation to $x_{0}=x, x_{1}=y, x_{2}=$ z, and $y_{0}=v$. Our new equation will be defined in these terms in the following section.
2.2. Second Blow-Up. We work with coordinates $\{(x, y, v),[s: t: u]\} \in \mathbb{C}^{3} \times \mathbb{P}^{2}$, then our blow-up conditions are

$$
\left|\begin{array}{cc}
x & y \\
s & t
\end{array}\right|=\left|\begin{array}{cc}
x & v \\
s & u
\end{array}\right|=\left|\begin{array}{cc}
y & v \\
t & u
\end{array}\right|=0
$$

together with the equation

$$
\left(x^{2}-y^{3}\right)\left(x+y^{2}\right)=v^{3}
$$

First, consider the chart where $s=1$ so that $y=x t, v=x u$, and $y u=v t$. Making these substitutions yields an equation in the variables (x, t, u) as follows

$$
\left(1-x t^{3}\right)\left(1+x t^{2}\right)=u^{3}
$$

Our second blow-up on this chart has successfully eliminated the singular point $(0,0,0)$, however, $C o C o A$ indicates that the singular point $(-1,-1,0)$ still remains. So yet another blow-up is required, but let us consider the other charts first.

Next, consider the chart where $t=1$ so that $x=y s, x u=v s$, and $v=y u$. Making these substitutions yields an equation in the variables (y, s, u) as follows

$$
\left(s^{2}-y\right)(s+y)=u^{3}
$$

Calculations with $C o C o A$ reveal that our blow-up on this coordinate chart has failed to eliminate either singularity! This is surprising indeed, and thus will require at least two more blow-ups! We now check our final chart.

Let $u=1$ so that $x t=y s, x=v s$, and $y=v t$. Making these substitutions yields an equation in the variables (v, s, t) as follows

$$
\left(s^{2}-v t^{3}\right)\left(s+v t^{2}\right)=1
$$

This equation has no singularities, as desired. Therefore we may continue with our calculations on the chart where $t=1$ which still has two singularities.
2.3. Third Blow-Up. We work with coordinates $\{(y, s, u),[a: b: c]\} \in \mathbb{C}^{3} \times \mathbb{P}^{2}$, then our blow-up conditions are

$$
\left|\begin{array}{cc}
y & s \\
a & b
\end{array}\right|=\left|\begin{array}{ll}
y & u \\
a & c
\end{array}\right|=\left|\begin{array}{ll}
s & u \\
b & c
\end{array}\right|=0
$$

together with the equation

$$
\left(s^{2}-y\right)(s+y)=u^{3}
$$

which has been carried over from the previous calculation on the coordinate chart defined by letting $t=1$.

First, consider the chart where $a=1$ so that $s=y b, u=y c$, and $s c=b u$. Making these substitutions yields an equation in the variables (y, b, c) as follows

$$
\left(y b^{2}-1\right)(b+1)=y c^{3}
$$

Next, consider the chart where $b=1$ so that $y=a s, y c=a u$, and $u=s c$. Making these substitutions yields an equation in the variables (s, a, c) as follows

$$
(s-a)(1+a)=s c^{3}
$$

Finally, consider the chart where $c=1$ so that $a s=y b, y=a u$, and $s=b u$. Making these substitutions yields an equation in the variables (u, a, b) as follows

$$
\left(b^{2} u-a\right)(b+a)=u
$$

The first two charts yield equations with a common singularity at the point $(1,-1,0)$, so that $(0,0,0)$ is no longer singular. The last equation is actually singularity free. Progress is being made, therefore we may choose either of the first two charts for the final blow-up. We choose the chart defined by letting $a=1$ without loss of generality.
2.4. Fourth Blow-Up. Finally, we must blow up once more, this time around the point $(1,-1,0)$. We work with coordinates $\{(y, b, c),[i: j: k]\} \in \mathbb{C}^{3} \times \mathbb{P}^{2}$, then our blow-up conditions are

$$
\left|\begin{array}{cc}
y & b \\
i & j
\end{array}\right|=\left|\begin{array}{cc}
y & c \\
i & k
\end{array}\right|=\left|\begin{array}{cc}
b & c \\
j & k
\end{array}\right|=0
$$

together with the equation

$$
\left[(y+1)(b-1)^{2}-1\right][(b-1)+1]=(y+1) c^{3}
$$

where we have changed coordinates for computational convenience. (Replacing y by $y+1$ and b by $b-1$ and leaving c alone in the original equation corresponds to the translation taking $(1,-1,0)$ to $(0,0,0)$.)

First, consider the chart where $i=1$ so that $b=y j, c=y k$, and $b k=j c$. Making these substitutions yields an equation in the variables (y, j, k) as follows

$$
\left[(y j-1)^{2}+j(y j-2)\right] j=(y+1) y k^{3}
$$

Next, consider the chart where $j=1$ so that $y=b i$, $i c=y k$, and $c=b k$. Making these substitutions yields an equation in the variables (b, i, k) as follows

$$
[b i(b-2)+i+b-2]=(b i+1) b k^{3}
$$

Finally, consider the chart where $k=1$ so that $y j=b i, y=i c$, and $b=c j$. Making these substitutions yields an equation in the variables (c, i, j) as follows

$$
\left[i(c j-1)^{2}+j(c j-2)\right] j=(i c+1) c
$$

Using $C o C o A$, we verify that none of these equations contain any further singular points. And so the point $(1,-1,0)$ has been completely smoothed. Thus our blow-up of the PCMI 2008 conference t-shirt curve $p\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}^{2}-x_{1}^{3}\right)^{2}-\left(x_{0}+x_{1}^{2}\right) x_{2}^{3}=0$ is finally resolved after four steps.

We started with a singular curve on the original surface. After the first blow-up the singularity was reduced to just two points. A second blow-up failed to resolve either singularity which was disheartening. However, the third and fourth blow-ups eliminated the singularities at $(0,0,0)$ and $(1,-1,0)$, respectively. Interesting pictures drawn using Mathematica as well as sample code from the CoCoA calculations can be found in the appendix following this section.

Appendix A: Pictures of the surfaces.

The seahorse: $\left(x_{0}^{2}-x_{1}^{3}\right)^{2}-\left(x_{0}+x_{1}^{2}\right) x_{2}^{3}=0$.

Another view of the seahorse.

The first blow-up: $\left(x^{2}-y^{3}\right)\left(x+y^{2}\right)=v^{3}$.

The second blow-up: $\left(s^{2}-y\right)(s+y)=u^{3}$.

The third blow-up: $\left((y+1)(b-1)^{2}-1\right) b=(y+1) c^{3}$.

Desingularized surface, chart 1 :

Another view:

Desingularized surface, chart 2:

Desingularized surface, chart 3:

Appendix B: $C o C o A$ calculations.

Here are samples of the code used to find the singularities.
I. The original surface is defined by the equation $\left(x^{2}-y^{3}\right)^{2}-\left(x+y^{2}\right) z^{3}=0$.

Use R: $:=\mathrm{Q}[\mathrm{x}, \mathrm{y}, \mathrm{z}]$, Lex; -- Lex is an elimination term ordering,
-- good for solving equations
$\mathrm{F}:=\left(\mathrm{x}^{\wedge} 2-\mathrm{y}^{\wedge} 3\right)^{\wedge} 2-\left(\mathrm{x}+\mathrm{y}^{\wedge} 2\right) \mathrm{z}^{\wedge} 3$;
J:=Jacobian([F]);
J;
Mat ([
$\left[4 x^{\wedge} 3-4 x y \wedge 3-z^{\wedge} 3,-6 x^{\wedge} 2 y^{\wedge} 2+6 y^{\wedge} 5-2 y z^{\wedge} 3,-3 x z^{\wedge} 2-3 y^{\wedge} 2 z^{\wedge} 2\right]$
])

```
J:=Flatten(List(J));
J;
[4x^3-4xy^3-z_3, -6x^2y^2 + 6y^5 - 2yz^3, -3xz^2 - 3y^2z^2]
I:=Ideal(F)+Ideal(J);
G:=ReducedGBasis(I);
G;
[z^5, xz^2 + y^2z^2, x^3 - xy^3 - 1/4z^3, x^2 y^2 - y^5 + 1/3yz^3,
    y^2z^3, y^6z^2 - y^5z^2]
```

-- We see that $z=0$.
Subst(G,[[z,0]]);
[0, 0, $\left.x^{\wedge} 3-x y \wedge 3, x^{\wedge} 2 y^{\wedge} 2-y^{\wedge} 5,0,0\right]$
-- Now it's easy to see that the solution set is defined by $z=0$ and
-- $x^{\wedge} 2-y^{\wedge} 3=0$
II. The first blow-up is defined (on one of its charts) by the system of equations

$$
\begin{aligned}
x^{2}-y^{3}-z v & =0 \\
v^{2}-\left(x+y^{2}\right) z & =0 .
\end{aligned}
$$

Use $R::=Q[x, y, z, v]$, Lex;
Q0: =x^2-y^3-zv;
Q1: =v^2-(x+y^2)z;
J:=Jacobian ([Q0, Q1]);
$\mathrm{N}:=$ Minors (2, J) ;
$\mathrm{N}:=$ Flatten(List(N));
I:=Ideal (N)+Ideal (Q0, Q1);
G:=ReducedGBasis(I);
G;
[v^2, $y^{\wedge} 4-y^{\wedge} 3-2 / 3 y z v-3 / 2 z v, z^{\wedge} 2 v, z^{\wedge} 3, y^{\wedge} 2 z, x z, x v-1 / 4 z^{\wedge} 2$, $\left.x^{\wedge} 2-y^{\wedge} 3-z v, y^{\wedge} 2 v+1 / 3 y z^{\wedge} 2, x y^{\wedge} 2+y^{\wedge} 3+3 / 2 z v\right]$
-- So v=0.
$\mathrm{G}:=\operatorname{Subst}(\mathrm{G},[[\mathrm{v}, 0]])$;
G;
$\left[0, y^{\wedge} 4-y^{\wedge} 3,0, z^{\wedge} 3, y^{\wedge} 2 z, x z,-1 / 4 z^{\wedge} 2, x^{\wedge} 2-y^{\wedge} 3,1 / 3 y z^{\wedge} 2, x y^{\wedge} 2+y^{\wedge} 3\right]$
-- And $z=0$.
G: =Subst(G,[[z,0]]);
G;
$\left[0, y^{\wedge} 4-y^{\wedge} 3,0,0,0,0,0, x^{\wedge} 2-y^{\wedge} 3,0, x y^{\wedge} 2+y^{\wedge} 3\right]$

-- Thus, $x=y=z=v=0$ or $x=-1, y=1, z=v=0$.
Stefan Sabo: University of Pennsylvania, Philadelphia, PA 19104
E-mail address: sabo@sas.upenn.edu

