PCMI USS 2008 Algebra review

1. RINGS AND IDEALS

Definition. A ring, R, is a non-empty set with two binary operations, addition (denoted +),
and multiplication, (denoted - or with the - omitted), such that the following hold:

(1) + and - are both commutative and associative;

(2) Both 4 and - have identities, denoted 0 and 1 respectively.
(3) Additive inverses exist.

(4) Multiplication distributes over addition.

In general, multiplication in a ring need not be commutative nor have an identity, but for
our purposes it always will.

Ezxample. The set of integers, Z, with standard addition and multiplication is a ring.
NOTE: In the sequel, R will denote a ring.

Definition. A subset I C R is an ideal if the following hold:
(1) a,bel=a+bel.
(2)acl,be R=a-bel.
(3) 0 e 1.
Example. The sets {0} and R are ideals in R.
Exercise. Show the set of even integers in Z is an ideal.
Exercise. Show that the intersection of ideals is an ideal.

Definition. For X C R, the ideal generated by X, denoted (X), is the smallest ideal in R
containing X. An ideal generated by a finite set {ry,79,...,7,} is called finitely generated
and is generally written (r1,79,...,7,). An ideal generated by a single element is called a
principal ideal.

Exercise. For X C R, show (X) ={Y_" rz;:2; € X,1; € R,n € Z>1}.
Definition. For I and J ideals in R, let:
(W) I+J={i+j:iel,jeJ}.
(2) IJ={ij:iel,jeJ}).
Exercise. Show that if I and J are ideals, then so is I + J.
Exercise. Let [ = (X), J = (V). Show that I[J = ({z-y:2€ X,y € Y})
Exercise. Give an example of a ring R and two ideals I, J C R such that {ij:i € I,j € J}
is not an ideal.

Definition. Elements a,b € R are zero-divisors if they are non-zero but ab = 0. If R has
no zero-divisors and 0 # 1, then it is an (integral) domain.

Exercise. Show that Z/4Z is not a domain.

Definition. A domain R in which all ideals are principal ideals is called a principal ideal

domain or PID.
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Exercise. Show that Z is a PID. (Hint: use the Euclidean algorithm.)
Definition. An ideal I C R is primeif  # Randabe [ ==aclorbel.
Exercise. Show that, for (n) C Z, the ideal (n) is prime if and only if n is a prime number.

Definition. A proper ideal M C R is maximal if for every ideal I O M, either I = M or
I = R. Note that R, itself, is not considered a maximal ideal.

Exercise. Show that every maximal ideal is prime.

2. HOMOMORPHISMS

Definition. For rings R, S, a mapping ¢ : R — S is a ring homomorphism if the following
properties hold:

(1) o(r) - (s
(2) »(r) + ¢(
(3) (1) = 1.

Definition. A ring homomorphism is a ring isomorphism if it is bijective.

) =(r-s) for all a,b € R.
s) = @(r +s) for all a,b € R.

Exercise. Show that the inverse of a ring isomorphism is a ring homomorphism and therefore
also a ring isomorphism.

Definition. Let ¢ : R — S be a ring homomorphism. The kernel of ¢ is the set
ker(p) = {r € R: ¢(r) = 0}.
The image of ¢ is the set
im(p) =p(R)={s €S :s=p(r) for some r € R}.

Exercise. Show that the kernel of ring homomorphism ¢ : R — S is an ideal in R.

3. QUOTIENT RINGS

Definition. A binary relation, ~, on a set S is an equivalence relation if it is reflexive,
symmetric, and transitive. That is, for all a,b,c € S:

(1) a ~ a.

(2) a~b=b~a.

(B)a~bb~c=anr~c

Definition. An equivalence relation ~ on S partitions S into disjoint subsets of the form
la] = {s € S : s~ a}, called equivalence classes. The subset [a], frequently abbreviated to a
is called the equivalence class of a.

Exercise. Show that for any ideal I C R, ~ defined by (a ~ b) <= (a—0b) € [ is an
equivalence relation. Here a — b = a + (—b), where —b is the additive inverse of b.
Definition. For aring R and an equivalence relation ~ on R, the quotient R/ ~, pronounced

“R mod ~7, is the set of all equivalence classes of elements of R. For an ideal I C R, the
quotient ring R/I is R/ ~ where ~ is defined by (a ~b) <= (a —0b) € [
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Exercise. For an ideal I C R, show that R/I is a ring under the operations [a] +[b] = [a+ ]
and [a] - [b] = [a-b]. Note that you will need to show that these operations are well-defined.

Exercise. An ideal I C R is prime if and only if R/ is a domain.

Definition. A field, k, is a ring such that for all non-zero a € k there exists a multiplicative
inverse of a in k, and 0 # 1.

Ezample. Q, R, C, and Z/pZ for p a prime are fields. Z is not a field.
Exercise. An ideal I C R is maximal if and only if R/ is a field.

Exercise. Let ¢ : R — S be a ring homomorphism. Define ¢ : R/ker(¢) — S by
¥(r) = p(r) for all r € R/ ker(¢). Show # is injective.

4. PoLYyNOMIAL RINGS

Definition. A polynomial over R is an expression of the form

d—1

p:ada:d—l—ad_la: + -4+ axr + ag

where each coefficient, a;, is an element of R and where z is a formal symbol. The degree
of p is d provided aq # 0. The collection of all polynomials is the ring of polynomials over
R, denoted R[z]. The ring structure is given by

() (504) e

7

and
(Z aixi) <Z bixi) = Z < Z aibj> z*.
i i k \itj=k
Define the polynomial ring in n variables, x1, ..., Ty, by R[z1,..., 2, = Rlz1, ..., Tn_1][zs]-

Theorem 4.1. Let f,g € k[z], where k is a field and g # 0. Then there exist q,r € k[z],
where deg(r) < deg(g) such that f = qg+r.

Exercise. For any field k, the polynomial ring k[x] is a principal ideal domain. (Hint:
given a non-zero ideal I C k[x], choose a non-zero element f € I of least degree. Using the
quotient-remainder theorem, just cited, show that I = (f).)

Exercise. Let f € k[z] and suppose f(a) = 0 for some a € k. Show that z —a divides f, i.e.,
there exists ¢ € k[x] such that f = (x — a)q . Use this to show that a non-zero polynomial
f € k[z] has at most deg(f) zeroes.

Definition. A field k is algebraically closed if every polynomial f € k[z] of degree at least
1 has a zero in k, i.e., there exists a € k such that f(a) = 0.

Ezample. R and Z/pZ for p prime are not algebraically closed. C is algebraically closed.
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5. EXACT SEQUENCES

Definition. A sequence of rings, {R;}, and ring homomorphisms {p; : R; — R; 1}, is ezact
at R; if im(p;—1) = ker(p;). The sequence is ezact if it is exact at every R; except for the
first and last.

Definition. A short exact sequence is an exact sequence with only 5 rings, beginning and
ending with the trivial ring, i.e., the one with only a single element, denoted 0:

0— A B0 —0

Exercise. Show the following facts about a short exact sequence as above:

(1) ¢ is injective.

(2) 9 is surjective.

(3) C is isomorphic to B/A.
Exercise. Short exact sequences can be defined identically for vector spaces and linear
mappings, instead of rings and ring homomorphisms. Given a short exact sequence of vector
spaces:

00— V' —V-—V —0

show dim (V') = dim(V"’) + dim(V").



