
PCMI USS 2008 Algebra review

1. Rings and Ideals

Definition. A ring, R, is a non-empty set with two binary operations, addition (denoted +),
and multiplication, (denoted · or with the · omitted), such that the following hold:

(1) + and · are both commutative and associative;
(2) Both + and · have identities, denoted 0 and 1 respectively.
(3) Additive inverses exist.
(4) Multiplication distributes over addition.

In general, multiplication in a ring need not be commutative nor have an identity, but for
our purposes it always will.

Example. The set of integers, Z, with standard addition and multiplication is a ring.

note: In the sequel, R will denote a ring.

Definition. A subset I ⊆ R is an ideal if the following hold:

(1) a, b ∈ I ⇒ a+ b ∈ I.
(2) a ∈ I, b ∈ R⇒ a · b ∈ I.
(3) 0 ∈ I.

Example. The sets {0} and R are ideals in R.

Exercise. Show the set of even integers in Z is an ideal.

Exercise. Show that the intersection of ideals is an ideal.

Definition. For X ⊆ R, the ideal generated by X, denoted (X), is the smallest ideal in R
containing X. An ideal generated by a finite set {r1, r2, . . . , rn} is called finitely generated
and is generally written (r1, r2, . . . , rn). An ideal generated by a single element is called a
principal ideal.

Exercise. For X ⊆ R, show (X) = {
∑n

i=1 rixi : xi ∈ X, ri ∈ R, n ∈ Z≥1}.
Definition. For I and J ideals in R, let:

(1) I + J = {i+ j : i ∈ I, j ∈ J}.
(2) IJ = ({ij : i ∈ I, j ∈ J}).

Exercise. Show that if I and J are ideals, then so is I + J .

Exercise. Let I = (X), J = (Y ). Show that IJ = ({x · y : x ∈ X, y ∈ Y })
Exercise. Give an example of a ring R and two ideals I, J ⊆ R such that {ij : i ∈ I, j ∈ J}
is not an ideal.

Definition. Elements a, b ∈ R are zero-divisors if they are non-zero but ab = 0. If R has
no zero-divisors and 0 6= 1, then it is an (integral) domain.

Exercise. Show that Z/4Z is not a domain.

Definition. A domain R in which all ideals are principal ideals is called a principal ideal
domain or PID.
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Exercise. Show that Z is a PID. (Hint: use the Euclidean algorithm.)

Definition. An ideal I ⊆ R is prime if I 6= R and ab ∈ I ⇒ a ∈ I or b ∈ I.
Exercise. Show that, for (n) ⊆ Z, the ideal (n) is prime if and only if n is a prime number.

Definition. A proper ideal M ( R is maximal if for every ideal I ⊇ M , either I = M or
I = R. Note that R, itself, is not considered a maximal ideal.

Exercise. Show that every maximal ideal is prime.

2. Homomorphisms

Definition. For rings R, S, a mapping ϕ : R→ S is a ring homomorphism if the following
properties hold:

(1) ϕ(r) · ϕ(s) = ϕ(r · s) for all a, b ∈ R.
(2) ϕ(r) + ϕ(s) = ϕ(r + s) for all a, b ∈ R.
(3) ϕ(1) = 1.

Definition. A ring homomorphism is a ring isomorphism if it is bijective.

Exercise. Show that the inverse of a ring isomorphism is a ring homomorphism and therefore
also a ring isomorphism.

Definition. Let ϕ : R→ S be a ring homomorphism. The kernel of ϕ is the set

ker(ϕ) = {r ∈ R : ϕ(r) = 0}.
The image of ϕ is the set

im(ϕ) = ϕ(R) = {s ∈ S : s = ϕ(r) for some r ∈ R}.

Exercise. Show that the kernel of ring homomorphism ϕ : R→ S is an ideal in R.

3. Quotient Rings

Definition. A binary relation, ∼, on a set S is an equivalence relation if it is reflexive,
symmetric, and transitive. That is, for all a, b, c ∈ S:

(1) a ∼ a.
(2) a ∼ b⇒ b ∼ a.
(3) a ∼ b, b ∼ c⇒ a ∼ c.

Definition. An equivalence relation ∼ on S partitions S into disjoint subsets of the form
[a] = {s ∈ S : s ∼ a}, called equivalence classes. The subset [a], frequently abbreviated to a
is called the equivalence class of a.

Exercise. Show that for any ideal I ⊆ R, ∼ defined by (a ∼ b) ⇐⇒ (a − b) ∈ I is an
equivalence relation. Here a− b = a+ (−b), where −b is the additive inverse of b.

Definition. For a ring R and an equivalence relation ∼ on R, the quotient R/ ∼, pronounced
“R mod ∼”, is the set of all equivalence classes of elements of R. For an ideal I ⊆ R, the
quotient ring R/I is R/ ∼ where ∼ is defined by (a ∼ b) ⇐⇒ (a− b) ∈ I.
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Exercise. For an ideal I ⊆ R, show that R/I is a ring under the operations [a]+[b] = [a+b]
and [a] · [b] = [a · b]. Note that you will need to show that these operations are well-defined.

Exercise. An ideal I ⊆ R is prime if and only if R/I is a domain.

Definition. A field, k, is a ring such that for all non-zero a ∈ k there exists a multiplicative
inverse of a in k, and 0 6= 1.

Example. Q, R, C, and Z/pZ for p a prime are fields. Z is not a field.

Exercise. An ideal I ⊆ R is maximal if and only if R/I is a field.

Exercise. Let ϕ : R → S be a ring homomorphism. Define ψ : R/ ker(ϕ) → S by
ψ(r) = ϕ(r) for all r ∈ R/ ker(ϕ). Show ψ is injective.

4. Polynomial Rings

Definition. A polynomial over R is an expression of the form

p = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

where each coefficient, ai, is an element of R and where x is a formal symbol. The degree
of p is d provided ad 6= 0. The collection of all polynomials is the ring of polynomials over
R, denoted R[x]. The ring structure is given by(∑

i

aix
i

)
+

(∑
i

bix
i

)
=
∑
i

(ai + bi)x
i

and (∑
i

aix
i

)(∑
i

bix
i

)
=
∑
k

(∑
i+j=k

aibj

)
xk.

Define the polynomial ring in n variables, x1, . . . , xn, by R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

Theorem 4.1. Let f, g ∈ k[x], where k is a field and g 6= 0. Then there exist q, r ∈ k[x],
where deg(r) < deg(g) such that f = qg + r.

Exercise. For any field k, the polynomial ring k[x] is a principal ideal domain. (Hint:
given a non-zero ideal I ⊆ k[x], choose a non-zero element f ∈ I of least degree. Using the
quotient-remainder theorem, just cited, show that I = (f).)

Exercise. Let f ∈ k[x] and suppose f(a) = 0 for some a ∈ k. Show that x−a divides f , i.e.,
there exists q ∈ k[x] such that f = (x − a)q . Use this to show that a non-zero polynomial
f ∈ k[x] has at most deg(f) zeroes.

Definition. A field k is algebraically closed if every polynomial f ∈ k[x] of degree at least
1 has a zero in k, i.e., there exists a ∈ k such that f(a) = 0.

Example. R and Z/pZ for p prime are not algebraically closed. C is algebraically closed.
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5. Exact Sequences

Definition. A sequence of rings, {Ri}, and ring homomorphisms {ϕi : Ri → Ri+1}, is exact
at Ri if im(ϕi−1) = ker(ϕi). The sequence is exact if it is exact at every Ri except for the
first and last.

Definition. A short exact sequence is an exact sequence with only 5 rings, beginning and
ending with the trivial ring, i.e., the one with only a single element, denoted 0:

0 −→ A
ϕ−→ B

ψ−→ C −→ 0

Exercise. Show the following facts about a short exact sequence as above:

(1) ϕ is injective.
(2) ψ is surjective.
(3) C is isomorphic to B/A.

Exercise. Short exact sequences can be defined identically for vector spaces and linear
mappings, instead of rings and ring homomorphisms. Given a short exact sequence of vector
spaces:

0 −→ V ′′ −→ V −→ V ′ −→ 0

show dim(V ) = dim(V ′) + dim(V ′′).
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