* 1. Suppose I(X) = (f) with $f \in k[x_0, \dots, x_n]$ a homogeneous polynomial of degree e. We have seen that for $d \geq e$

$$H_X(d) = \dim_k S(X)_d = \binom{n+d}{n} - \binom{n+d-e}{n}.$$

Expanding this expression as a polynomial in d, show that for $d \geq e$,

$$H_X(d) = \frac{e}{(n-1)!} d^{n-1} + \text{lower order terms in } d.$$

- * 2. Let X be the union of the two disjoint lines $\{x=y=0\}$ and $\{z=w=0\}$ in \mathbb{P}^3 . Thus, $I(X)=(x,y)\cap(z,w)=(xz,xw,yz,yw)$. Calculate the Hilbert function and Hilbert polynomial for X by hand. (For $d=0,1,2,3,\ldots$, write out the monomials of degree d in four indeterminates, and set xz=xw=yz=yw=0. The surviving monomials will be a basis for $S(X)_d=S_d/I(X)_d$.)
- * 3. Let $X \subseteq \mathbb{P}^n$ be a projective variety with Hilbert polynomial P_X . Recall that the degree of P_X is the dimension of X and that $(\dim X)!$ times the coefficient of the leading term of P_X is the degree of X. The *arithmetic genus* of X is

$$p_a(X) = (-1)^{\dim X} (P_X(0) - 1).$$

- (a) Find the degree and arithmetic genus of the twisted cubic (see Lecture 7).
- (b) Let $X = Z(f) \subset \mathbb{P}^2$ be a plane curve of degree d, i.e., $\deg f = d$. Show that the arithmetic genus of X is

$$p_a(X) = \frac{(d-1)(d-2)}{2}.$$

- * 4. Let X be the set consisting of three distinct points in \mathbb{P}^2 . What are the possible Hilbert functions and Hilbert polynomials for X? (Recall that requiring a polynomial to vanish at a point is just a linear condition on the coefficients of the polynomial. How many linear equations will vanish at all three points? How many quadratic, etc.?)
 - 5. Let $I \subseteq S = k[x_0, \ldots, x_n]$ be a homogeneous ideal, and suppose x_0 is not a zero divisor in S/I. Let $J = I + (x_0)$. Show that

$$H_{S/J}(d) = \Delta H_{S/I}(d) := H_{S/I}(d) - H_{S/I}(d-1).$$

(Hint: find an appropriate short exact sequence.)

6. Numerical polynomials. (From Stanley's Enumerative Combinatorics.)

A numerical polynomial is a polynomial $f \in \mathbb{Q}[t]$ such that f(n) is an integer for each integer n. Of course, every $f \in \mathbb{Z}[t]$ is a numerical polynomial. The polynomial $\frac{1}{2}n^2 - \frac{1}{2}n$ is an example of a numerical polynomial with coefficients that are not integers. Hilbert functions are examples of numerical polynomials.

For any function $f: \mathbb{Z} \to \mathbb{C}$, not just polynomial functions, define the *first difference* operator, Δ , by

$$\Delta f(n) = f(n+1) - f(n).$$

Thus, $\Delta f : \mathbb{Z} \to \mathbb{C}$, too. The k-th difference operator is $\Delta^k = \Delta(\Delta^{k-1}f)$.

(a) Show

$$\Delta^{k} f(n) = \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} f(n+i)$$

and hence,

$$\Delta^{k} f(0) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} f(i)$$

(Hint: Define the shift operator E by Ef(n) = f(n+1). Then $\Delta = E-1$ where 1 denotes the identity operator, 1f = f. Substitute for Δ^k and expand.)

- (b) Show $f(n) = \sum_{k=0}^{n} {n \choose k} \Delta^{k} f(0)$. (Hint: $f(n) = E^{n} f(0)$ and $E = 1 + \Delta$.)
- (c) Show f is a polynomial of degree at most d over \mathbb{C} iff $\Delta^{d+1}f = 0$ (equivalently, $\Delta^d f$ is constant or $\Delta^k f = 0$ for all k > d). (Hint: induction.)
- (d) If f is a polynomial of degree d, then

$$f(t) = \sum_{k=0}^{d} \Delta^{k} f(0) \binom{t}{k}$$

where, by definition,

$$\binom{t}{k} = \frac{t(t-1)\cdots(t-k+1)}{k!}.$$

Note that $f: \mathbb{Z} \to \mathbb{Z}$ iff $\Delta^k f(0) \in \mathbb{Z}$ for $0 \le k \le d$. In particular, every numerical polynomial of degree d is an integer combination of $\binom{t}{k}_{k=0}^d$.

(e) Using the formula just given, find the polynomial f, of degree 4 whose first 5 values f(0), f(1), f(2), f(3), f(4), are

(Hint: under the given row of numbers, write their first differences in a row. Then take the first differences of the row just constructed. Continue. Along the left-hand edge, you will be computing $\Delta^k f(0)$.)