\star 1. Suppose $I(X)=(f)$ with $f \in k\left[x_{0}, \ldots, x_{n}\right]$ a homogeneous polynomial of degree e. We have seen that for $d \geq e$

$$
H_{X}(d)=\operatorname{dim}_{k} S(X)_{d}=\binom{n+d}{n}-\binom{n+d-e}{n}
$$

Expanding this expression as a polynomial in d, show that for $d \geq e$,

$$
H_{X}(d)=\frac{e}{(n-1)!} d^{n-1}+\text { lower order terms in } d
$$

$\star 2$. Let X be the union of the two disjoint lines $\{x=y=0\}$ and $\{z=w=0\}$ in \mathbb{P}^{3}. Thus, $I(X)=(x, y) \cap(z, w)=(x z, x w, y z, y w)$. Calculate the Hilbert function and Hilbert polynomial for X by hand. (For $d=0,1,2,3, \ldots$, write out the monomials of degree d in four indeterminates, and set $x z=x w=y z=y w=0$. The surviving monomials will be a basis for $S(X)_{d}=S_{d} / I(X)_{d}$.)
$\star 3$. Let $X \subseteq \mathbb{P}^{n}$ be a projective variety with Hilbert polynomial P_{X}. Recall that the degree of P_{X} is the dimension of X and that $(\operatorname{dim} X)$! times the coefficient of the leading term of P_{X} is the degree of X. The arithmetic genus of X is

$$
p_{a}(X)=(-1)^{\operatorname{dim} X}\left(P_{X}(0)-1\right)
$$

(a) Find the degree and arithmetic genus of the twisted cubic (see Lecture 7).
(b) Let $X=Z(f) \subset \mathbb{P}^{2}$ be a plane curve of degree d, i.e., $\operatorname{deg} f=d$. Show that the arithmetic genus of X is

$$
p_{a}(X)=\frac{(d-1)(d-2)}{2} .
$$

$\star 4$. Let X be the set consisting of three distinct points in \mathbb{P}^{2}. What are the possible Hilbert functions and Hilbert polynomials for X ? (Recall that requiring a polynomial to vanish at a point is just a linear condition on the coefficients of the polynomial. How many linear equations will vanish at all three points? How many quadratic, etc.?)
5. Let $I \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous ideal, and suppose x_{0} is not a zero divisor in S / I. Let $J=I+\left(x_{0}\right)$. Show that

$$
H_{S / J}(d)=\Delta H_{S / I}(d):=H_{S / I}(d)-H_{S / I}(d-1) .
$$

(Hint: find an appropriate short exact sequence.)
6. Numerical polynomials. (From Stanley's Enumerative Combinatorics.)

A numerical polynomial is a polynomial $f \in \mathbb{Q}[t]$ such that $f(n)$ is an integer for each integer n. Of course, every $f \in \mathbb{Z}[t]$ is a numerical polynomial. The polynomial $\frac{1}{2} n^{2}-\frac{1}{2} n$ is an example of a numerical polynomial with coefficients that are not integers. Hilbert functions are examples of numerical polynomials.
For any function $f: \mathbb{Z} \rightarrow \mathbb{C}$, not just polynomial functions, define the first difference operator, Δ, by

$$
\Delta f(n)=f(n+1)-f(n)
$$

Thus, $\Delta f: \mathbb{Z} \rightarrow \mathbb{C}$, too. The k-th difference operator is $\Delta^{k}=\Delta\left(\Delta^{k-1} f\right)$.
(a) Show

$$
\Delta^{k} f(n)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} f(n+i)
$$

and hence,

$$
\Delta^{k} f(0)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} f(i)
$$

(Hint: Define the shift operator E by $E f(n)=f(n+1)$. Then $\Delta=E-1$ where 1 denotes the identity operator, $1 f=f$. Substitute for Δ^{k} and expand.)
(b) Show $f(n)=\sum_{k=0}^{n}\binom{n}{k} \Delta^{k} f(0)$. (Hint: $f(n)=E^{n} f(0)$ and $E=1+\Delta$.)
(c) Show f is a polynomial of degree at most d over \mathbb{C} iff $\Delta^{d+1} f=0$ (equivalently, $\Delta^{d} f$ is constant or $\Delta^{k} f=0$ for all $k>d$). (Hint: induction.)
(d) If f is a polynomial of degree d, then

$$
f(t)=\sum_{k=0}^{d} \Delta^{k} f(0)\binom{t}{k}
$$

where, by definition,

$$
\binom{t}{k}=\frac{t(t-1) \cdots(t-k+1)}{k!} .
$$

Note that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ iff $\Delta^{k} f(0) \in \mathbb{Z}$ for $0 \leq k \leq d$. In particular, every numerical polynomial of degree d is an integer combination of $\left\{\binom{t}{k}\right\}_{k=0}^{d}$.
(e) Using the formula just given, find the polynomial f, of degree 4 whose first 5 values $f(0), f(1), f(2), f(3), f(4)$, are

$$
\begin{array}{llllll}
1 & 0 & 3 & 34 & 141 & 396 .
\end{array}
$$

(Hint: under the given row of numbers, write their first differences in a row. Then take the first differences of the row just constructed. Continue. Along the left-hand edge, you will be computing $\Delta^{k} f(0)$.)

