

PCMI 2008 Undergraduate Summer School Lecture 7: Hilbert functions

David Perkinson

Reed College Portland, OR

Summer 2008

 $X \subseteq \mathbb{P}^n$ an algebraic set

Question: How many hypersurfaces of degree *d* contain *X*?

$$Z(f) \supseteq X \iff f \in I(X)$$

Notation

$$I(X)_d = \{f \in I(X) : f \text{ homog. of degree } d\}$$

$$I(X)$$
 homogeneous \implies $I(X) = \bigoplus_{d \ge 0} I(X)_d$

Rephrasing: What is the size of $I(X)_d$?

Hilbert's theorem

Examples:
$$X \subseteq \mathbb{P}^2$$
, $d = 2$

$$f = a_0 x^2 + a_1 x y + a_2 x z + a_3 y^2 + a_4 y z + a_5 z^2$$

 $X = \{(0, 0, 1)\}$

$$f(0,0,1)=0 \quad \Longleftrightarrow \quad a_5=0$$

One linear condition on the vector of coefficients.

 $X = \{(0,0,1), (1,0,1)\}$

$$\begin{array}{ll} f(0,0,1)=0 & \Longleftrightarrow & a_5=0 \\ f(1,0,1)=0 & \Longleftrightarrow & a_0+a_2+a_5=0 \end{array}$$

Two linear conditions on the vector of coefficients.

Hilbert's theorem

Examples:
$$X\subseteq \mathbb{P}^2, \quad d=2$$

$$f = a_0 x^2 + a_1 x y + a_2 x z + a_3 y^2 + a_4 y z + a_5 z^2$$

 $X = \{(0,0,1), (1,0,1), (2,0,1)\}$

$$\begin{array}{ll} f(0,0,1)=0 & \Longleftrightarrow & a_5=0 \\ f(1,0,1)=0 & \Longleftrightarrow & a_0+a_2+a_5=0 \\ f(2,0,1)=0 & \Longleftrightarrow & 4a_0+2a_2+a_5=0 \end{array}$$

Equivalent to

$$a_0 = a_2 = a_5 = 0.$$

Three linear conditions on the vector of coefficients.

Hilbert's theorem

Examples:
$$X \subseteq \mathbb{P}^2$$
, $d = 2$

$$f = a_0 x^2 + a_1 x y + a_2 x z + a_3 y^2 + a_4 y z + a_5 z^2$$

 $X = \{(0,0,1), (1,0,1), (2,0,1), (3,0,1)\}$

$$\begin{array}{ll} f(0,0,1) = 0 & \iff & a_5 = 0 \\ f(1,0,1) = 0 & \iff & a_0 + a_2 + a_5 = 0 \\ f(2,0,1) = 0 & \iff & 4a_0 + 2a_2 + a_5 = 0 \\ f(3,0,1) = 0 & \iff & 9a_0 + 3a_2 + a_5 = 0 \end{array}$$

Equivalent to

$$a_0 = a_2 = a_5 = 0.$$

Still, three linear conditions on the vector of coefficients.

The Hilbert function

Hilbert's theorem

Examples:
$$\pmb{X}\subseteq \mathbb{P}^2, \quad \pmb{d}=2$$

$$f = a_0 x^2 + a_1 x y + a_2 x z + a_3 y^2 + a_4 y z + a_5 z^2$$

 $X = \{(0,0,1), (1,0,1), (2,0,1), (3,0,1), (4,0,1)\}$

$$a_0 = a_2 = a_5 = 0.$$

Again, three linear conditions on the vector of coefficients.

Hilbert's theorem

Equivalent questions

 $X \subseteq \mathbb{P}^n$ an algebraic set

- How many hypersurfaces of degree d contain X?
- What is the size of $I(X)_d$?
- How many conditions are placed on a hypersurface of degree d by requiring it to contain X?

$$S = k[x_0, \dots, x_n]$$

$$S_d = \{f \in S : f \text{ homog., degree } d\}$$

Definition

The homogeneous coordinate ring for $X \subseteq \mathbb{P}^n$ is

$$S(X) = S/I(X)$$

Its degree d part is

$$S(X)_d = S_d / I(X)_d.$$

An exact sequence

$$0 \rightarrow I(X) \rightarrow S \rightarrow S(X) \rightarrow 0$$

restricted to degree d

$$0
ightarrow I(X)_d
ightarrow S_d
ightarrow S(X)_d
ightarrow 0$$

rank-nullity theorem

 $\dim_k S(X)_d = \dim_k S_d - \dim_k I(X)_d$

Definition The Hilbert function of $X \subseteq \mathbb{P}^n$ is

$$H_X(d) = \dim_k S(X)_d = \dim_k S_d - \dim_k I(X)_d.$$

Questions

- How many hypersurfaces of degree d contain X?
- What is the size of $I(X)_d$?
- How many conditions are placed on a hypersurface of degree by requiring it to contain *X*?
- What is the Hilbert function of X?

The Hilbert function

Example 1

Hilbert's theorem

$$X = \mathbb{P}^n, \quad I(X) = (0)$$
$$S(X) = S/(0) = S = k[x_0, \dots, x_n]$$
$$H_{\mathbb{P}^n}(d) = \dim S_d = \dim k[x_0, \dots, x_n]_d.$$

The Hilbert function

Hilbert's theorem

$$n = 2, \qquad S = k[x_0, x_1, x_2]$$

d	basis for S_d	$H_{\mathbb{P}^2}(d)$	
0	1	1	
1	x_0, x_1, x_2	3	
2	$x_0^2, x_0 x_1, x_0 x_2, x_1^2, x_1 x_2, x_2^2$	6	
3	$x_0^3, x_0^2 x_1, \dots, x_2^3$	10	
4		15	

The Hilbert function

Hilbert's theorem

boxes-and-dots argument

One-to-one correspondence

Hilbert function for $X = \mathbb{P}^n$

In general, need *n* dots (for n + 1 indeterminates), and n + d slots:

$$H_{\mathbb{P}^n}(d) = \binom{n+d}{n}$$

The Hilbert function

Example 2

Hilbert's theorem

$$X = \{(0,0,1), (1,0,1), (2,0,1), (3,0,1), (4,0,1)\}$$

CoCoA results

$$d: 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ \dots \ H_X(d): 1 \ 2 \ 3 \ 4 \ 5 \ 5 \ \dots$$

The Hilbert function

Hilbert's theorem

Example 3

X =twisted cubic $\subset \mathbb{P}^3$

CoCoA results

$$H_X(d) = 3d + 1$$
 for $d \ge 0$

d :	0	1	2	3	4	5
$\dim_k k[x, y, z, w]:$	1	4	10	20	35	56
$H_X(d)$:	1	4	7	10	13	16
dim $I(X)_d$:	0	0	3	10	22	40

Example 4

Hypersurface

$$\begin{split} I(X) &= (f), \qquad f \in S = k[x_0, \dots, x_n], \qquad \deg f = e \\ 0 &\longrightarrow S \xrightarrow{\cdot f} S \longrightarrow S(X) \longrightarrow 0 \\ 0 &\longrightarrow S_{d-e} \xrightarrow{\cdot f} S_d \longrightarrow S(X)_d \longrightarrow 0 \end{split}$$

$$H_X(d) = \dim S(X)_d = \begin{cases} \dim_k S_d & \text{for } d < e \\ \dim_k S_d - \dim_k S_{d-e} & \text{for } d \ge e \end{cases}$$
$$= \begin{cases} \binom{n+d}{n} & \text{for } d < e \\ \binom{n+d}{n} - \binom{n+d-e}{n} & \text{for } d \ge e \end{cases}$$

The Hilbert function

Hilbert's theorem

Example 4 continued

$$H_X(d) = \dim S(X)_d = \begin{cases} \binom{n+d}{n} & \text{for } d < e \\ \binom{n+d}{n} - \binom{n+d-e}{n} & \text{for } d \ge e \end{cases}$$

HW: For $d \ge e$,

$$H_X(d) = \frac{e}{(n-1)!}d^{n-1} + \text{lots}$$

Hilbert's theorem

Theorem (Hilbert)

For $X \subseteq \mathbb{P}^n$, there exists a unique polynomial $P_X(d)$ such that

 $P_X(d)=H_X(d)$

for $d \gg 0$.

- *P*_X(*d*) is called the Hilbert polynomial of *X*;
- deg $P_X = \dim X$;
- the leading coefficient of P_X(d) is

where deg X = e.