PCMI 2008 Undergraduate Summer School
 Lecture 7: Hilbert functions

David Perkinson

Reed College
Portland, OR

Summer 2008
$X \subseteq \mathbb{P}^{n}$ an algebraic set
Question: How many hypersurfaces of degree d contain X ?

$$
Z(f) \supseteq X \quad \Longleftrightarrow \quad f \in I(X)
$$

Notation

$$
I(X)_{d}=\{f \in I(X): f \text { homog. of degree } d\}
$$

$$
I(X) \text { homogeneous } \Longrightarrow \quad I(X)=\bigoplus_{d \geq 0} I(X)_{d}
$$

Rephrasing: What is the size of $I(X)_{d}$?

Examples: $X \subseteq \mathbb{P}^{2}, \quad d=2$

$$
f=a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}
$$

$X=\{(0,0,1)\}$

$$
f(0,0,1)=0 \quad \Longleftrightarrow \quad a_{5}=0
$$

One linear condition on the vector of coefficients.

$$
X=\{(0,0,1),(1,0,1)\}
$$

$$
\begin{aligned}
& f(0,0,1)=0 \quad \Longleftrightarrow \quad a_{5}=0 \\
& f(1,0,1)=0 \quad \Longleftrightarrow \quad a_{0}+a_{2}+a_{5}=0
\end{aligned}
$$

Two linear conditions on the vector of coefficients.

Examples: $X \subseteq \mathbb{P}^{2}, \quad d=2$

$$
f=a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}
$$

$X=\{(0,0,1),(1,0,1),(2,0,1)\}$

$$
\begin{aligned}
& f(0,0,1)=0 \quad \Longleftrightarrow \quad a_{5}=0 \\
& f(1,0,1)=0 \quad \Longleftrightarrow \quad a_{0}+a_{2}+a_{5}=0 \\
& f(2,0,1)=0 \quad \Longleftrightarrow \quad 4 a_{0}+2 a_{2}+a_{5}=0
\end{aligned}
$$

Equivalent to

$$
a_{0}=a_{2}=a_{5}=0 .
$$

Three linear conditions on the vector of coefficients.

Examples: $X \subseteq \mathbb{P}^{2}, \quad d=2$

$$
f=a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}
$$

$$
\begin{aligned}
& X=\{(0,0,1),(1,0,1),(2,0,1),(3,0,1)\} \\
& \begin{array}{lll}
f(0,0,1)=0 & \Longleftrightarrow & a_{5}=0 \\
f(1,0,1)=0 & \Longleftrightarrow & a_{0}+a_{2}+a_{5}=0 \\
f(2,0,1)=0 & \Longleftrightarrow & 4 a_{0}+2 a_{2}+a_{5}=0 \\
f(3,0,1)=0 & \Longleftrightarrow & 9 a_{0}+3 a_{2}+a_{5}=0
\end{array}
\end{aligned}
$$

Equivalent to

$$
a_{0}=a_{2}=a_{5}=0 .
$$

Still, three linear conditions on the vector of coefficients.

Examples: $X \subseteq \mathbb{P}^{2}, \quad d=2$

$$
f=a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}
$$

$$
\begin{gathered}
X=\{(0,0,1),(1,0,1),(2,0,1),(3,0,1),(4,0,1)\} \\
a_{0}=a_{2}=a_{5}=0 .
\end{gathered}
$$

Again, three linear conditions on the vector of coefficients.

Equivalent questions

$X \subseteq \mathbb{P}^{n}$ an algebraic set

- How many hypersurfaces of degree d contain X ?
- What is the size of $I(X)_{d}$?
- How many conditions are placed on a hypersurface of degree d by requiring it to contain X ?

$$
\begin{aligned}
S & =k\left[x_{0}, \ldots, x_{n}\right] \\
S_{d} & =\{f \in S: f \text { homog., degree } d\}
\end{aligned}
$$

Definition

The homogeneous coordinate ring for $X \subseteq \mathbb{P}^{n}$ is

$$
S(X)=S / I(X)
$$

Its degree d part is

$$
S(X)_{d}=S_{d} / l(X)_{d} .
$$

An exact sequence

$$
0 \rightarrow I(X) \rightarrow S \rightarrow S(X) \rightarrow 0
$$

restricted to degree d

$$
0 \rightarrow I(X)_{d} \rightarrow S_{d} \rightarrow S(X)_{d} \rightarrow 0
$$

rank-nullity theorem
$\operatorname{dim}_{k} S(X)_{d}=\operatorname{dim}_{k} S_{d}-\operatorname{dim}_{k} I(X)_{d}$

Definition
The Hilbert function of $X \subseteq \mathbb{P}^{n}$ is

$$
H_{X}(d)=\operatorname{dim}_{k} S(X)_{d}=\operatorname{dim}_{k} S_{d}-\operatorname{dim}_{k} I(X)_{d} .
$$

Questions

- How many hypersurfaces of degree d contain X ?
- What is the size of $I(X)_{d}$?
- How many conditions are placed on a hypersurface of degree by requiring it to contain X ?
- What is the Hilbert function of X ?

Example 1

$$
\begin{aligned}
X & =\mathbb{P}^{n}, \quad I(X)=(0) \\
S(X) & =S /(0)=S=k\left[x_{0}, \ldots, x_{n}\right] \\
H_{\mathbb{P}^{n}}(d) & =\operatorname{dim} S_{d}=\operatorname{dim} k\left[x_{0}, \ldots, x_{n}\right]_{d} .
\end{aligned}
$$

$$
n=2, \quad S=k\left[x_{0}, x_{1}, x_{2}\right]
$$

d	basis for S_{d}	$H_{\mathbb{P}^{2}}(d)$
0	1	1
1	x_{0}, x_{1}, x_{2}	3
2	$x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$	6
3	$x_{0}^{3}, x_{0}^{2} x_{1}, \ldots, x_{2}^{3}$	10
4	\ldots	15

boxes-and-dots argument

One-to-one correspondence

$$
\begin{array}{lllllll}
\hline x_{0} & \boxed{ } & \boxed{x_{1}} & \boxed{x_{1}} & \boxed{ } & \boxed{x_{2}} & \longleftrightarrow
\end{array} x_{0} x_{1}^{2} x_{2}
$$

Hilbert function for $X=\mathbb{P}^{n}$
In general, need n dots (for $n+1$ indeterminates), and $n+d$ slots:

$$
H_{\mathbb{P} n}(d)=\binom{n+d}{n}
$$

Example 2

$$
X=\{(0,0,1),(1,0,1),(2,0,1),(3,0,1),(4,0,1)\}
$$

CoCoA results

$$
\begin{array}{rllllllll}
d: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
H_{X}(d): & 1 & 2 & 3 & 4 & 5 & 5 & 5 & \ldots
\end{array}
$$

Example 3

$X=$ twisted cubic $\subset \mathbb{P}^{3}$

CoCoA results

$$
H_{X}(d)=3 d+1 \text { for } d \geq 0
$$

$d:$	0	1	2	3	4	5
$\operatorname{dim}_{k} k[x, y, z, w]:$	1	4	10	20	35	56
$H_{X}(d):$	1	4	7	10	13	16
$\operatorname{dim} I(X)_{d}:$	0	0	3	10	22	40

Example 4

Hypersurface

$$
\begin{gathered}
I(X)=(f), \quad f \in S=k\left[x_{0}, \ldots, x_{n}\right], \quad \operatorname{deg} f=e \\
0 \longrightarrow S \xrightarrow{\text { f }} S \longrightarrow S(X) \longrightarrow 0 \\
0 \longrightarrow S_{d-e} \xrightarrow{\cdot f} S_{d} \longrightarrow S(X)_{d} \longrightarrow 0
\end{gathered}
$$

$$
\begin{aligned}
H_{X}(d)=\operatorname{dim} S(X)_{d} & =\left\{\begin{array}{cl}
\operatorname{dim}_{k} S_{d} & \text { for } d<e \\
\operatorname{dim}_{k} S_{d}-\operatorname{dim}_{k} S_{d-e} & \text { for } d \geq e
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\binom{n+d}{n} & \text { for } d<e \\
\binom{n+d}{n}-\binom{n+d-e}{n} & \text { for } d \geq e
\end{array}\right.
\end{aligned}
$$

Example 4 continued

$$
H_{X}(d)=\operatorname{dim} S(X)_{d}=\left\{\begin{array}{cc}
\binom{n+d}{n} & \text { for } d<e \\
\binom{n+d}{n}-\binom{n+d-e}{n} & \text { for } d \geq e
\end{array}\right.
$$

$H W$: For $d \geq e$,

$$
H_{X}(d)=\frac{e}{(n-1)!} d^{n-1}+\text { lots }
$$

Theorem (Hilbert)
For $X \subseteq \mathbb{P}^{n}$, there exists a unique polynomial $P_{X}(d)$ such that

$$
P_{X}(d)=H_{X}(d)
$$

for $d \gg 0$.

- $P_{X}(d)$ is called the Hilbert polynomial of X;
- $\operatorname{deg} P_{X}=\operatorname{dim} X$;
- the leading coefficient of $P_{X}(d)$ is

$$
\frac{e}{(\operatorname{dim} X)!}
$$

where $\operatorname{deg} X=e$.

