PCMI USS 2008

- * 1. Let $I = (x + z^2, y + z^2)$. Show that the homogenization of I in k[w, x, y, z] is not obtained by simply homogenizing the given generators of I.
- * 2. Let $f = y x^2$ and $g = z x^3$. The affine twisted cubic is C = Z(f, g). Its projective closure is $\overline{C} = Z(wy x^2, zw xy, y^2 xz)$. Characterize the points in $Z(f^h, g^h) \setminus \overline{C}$.
- * 3. Let f = k[x, y, z] be a homogeneous polynomial and let g be homogenization of f(x, y, 1) with respect to z. Give an example for which $f \neq g$.
- * 4. Show that if $X = Z(I) \subset \mathbb{A}^n$, then $Z(I^h) \subset \mathbb{P}^n$ is the smallest projective algebraic set containing X. (Hint: for a homogeneous polynomial f, we have that $x_0^e(f(1, x_1, \dots, x_n))^h = f(x_0, x_1, \dots, x_n)$ for some e.)
 - 5. Let $f \in \mathbb{C}[x, y]$ be a polynomial of degree 2. The algebraic set X = Z(f) is a plane conic. Show that X is a circle iff its points at infinity are exactly the circular points at infinity: (i, 1, 0), (1, i, 0).
- * 6. Find the point at ∞ of the plane curve $y = x^3$. Change coordinates to see this point and find that this otherwise smooth curve has a singularity at ∞ .
 - 7. Dual curves.

Let C be a plane curve: C = Z(f) where $f \in k[x, y]$, and let \overline{C} be its projective closure. Thus, $\overline{C} = Z(\overline{f})$ where $\overline{f} = f^h \in k[x, y, z]$ is the homogenization of f. Recall that, letting $(\mathbb{P}^2)^*$ denote the collection of lines in the projective plane, \mathbb{P}^2 , there is a one-to-one correspondence

$$\begin{aligned} (\mathbb{P}^2)^* & \leftrightarrow & \mathbb{P}^2 \\ ax + by + cz & \leftrightarrow & (a, b, c) \end{aligned}$$

We then just identify $(\mathbb{P}^2)^*$ and \mathbb{P}^2 , referring interchangeably to ax + by + cz or (a, b, c).

- (a) Compute the equation for the tangent line to C at a point $p \in C$. Since C is a level set of f, the tangent line will be the line passing through p and perpendicular to the gradient ∇f .
- (b) Prove Euler's formula: if $g \in k[x_0, \ldots, x_n]$ is homogeneous of degree d, then

$$(x_0, \dots, x_n) \cdot \nabla g = \sum_{i=0}^n x_i \frac{\partial g}{\partial x_i}$$
$$= \deg(g) g.$$

(c) Show that the homogenization of the equation of the tangent line in part (a) gives the point

$$\nabla \bar{f}(p) = \left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)\right) \in (\mathbb{P}^2)^*.$$

[Hint: Euler's formula.] As usual, identify the point $p = (a, b) \in \mathbb{A}^2$ with $(a, b, 1) \in \mathbb{P}^2$.

(d) Let \bar{C}° denote the nonsingular points of \bar{C} , i.e., those points $p \in \bar{C}$ such that $\nabla \bar{f}(p) \neq 0$. Define

$$\begin{array}{rcl} \partial:\bar{C}^\circ & \to & (\mathbb{P}^2)^* = \mathbb{P}^2 \\ p & \mapsto & \nabla \bar{f}(p) \end{array}$$

Definition. The *dual curve* to C, denoted \hat{C} , is the smallest projective algebraic set containing the closure of the image of ∂ , i.e., the projective closure of im ∂ .

(e) Compute the dual curve to $y^2 = x^3$ by eliminating x, y, z from the equations

$$\nabla \bar{f} = (u, v, w), \quad y^2 = x^3$$

where $\bar{f} = zy^2 - x^3$. To which point on the dual does the cusp point (0, 0, 1) on f correspond? (Hint: parametrize the curve by $t \mapsto (t^2, t^3, 1) \in \mathbb{P}^2$, then compose with the duality map ∂).

- (f) Suppose there is line tangent to a plane curve at two points. What can you say about the dual curve?
- (g) Let C = Z(f) be a general plane conic, writing

$$f(x, y, z) = a_0 x^2 + 2a_1 xy + 2a_2 xz + a_3 y^2 + 2a_4 yz + a_5 z^2.$$

i. Find a symmetric 3×3 matrix M such that

$$f = \left(\begin{array}{ccc} x & y & z\end{array}\right) M \left(\begin{array}{c} x \\ y \\ z\end{array}\right)$$

We say that M is the matrix corresponding to the conic f.

ii. Show that the dual to C is the conic defined by M^{-1} . (Hint: Eliminate x, y, and z from the system of equations $(u, v, w) = \nabla f$ and f = 0).