$\star$ 1. Let $I=\left(x+z^{2}, y+z^{2}\right)$. Show that the homogenization of $I$ in $k[w, x, y, z]$ is not obtained by simply homogenizing the given generators of $I$.
$\star 2$. Let $f=y-x^{2}$ and $g=z-x^{3}$. The affine twisted cubic is $C=Z(f, g)$. Its projective closure is $\bar{C}=Z\left(w y-x^{2}, z w-x y, y^{2}-x z\right)$. Characterize the points in $Z\left(f^{h}, g^{h}\right) \backslash \bar{C}$.
$\star 3$. Let $f=k[x, y, z]$ be a homogeneous polynomial and let $g$ be homogenization of $f(x, y, 1)$ with respect to $z$. Give an example for which $f \neq g$.
$\star$ 4. Show that if $X=Z(I) \subset \mathbb{A}^{n}$, then $Z\left(I^{h}\right) \subset \mathbb{P}^{n}$ is the smallest projective algebraic set containing $X$. (Hint: for a homogeneous polynomial $f$, we have that $x_{0}^{e}\left(f\left(1, x_{1}, \ldots, x_{n}\right)\right)^{h}=$ $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ for some $e$.)
5. Let $f \in \mathbb{C}[x, y]$ be a polynomial of degree 2 . The algebraic set $X=Z(f)$ is a plane conic. Show that $X$ is a circle iff its points at infinity are exactly the circular points at infinity: $(i, 1,0),(1, i, 0)$.
$\star 6$. Find the point at $\infty$ of the plane curve $y=x^{3}$. Change coordinates to see this point and find that this otherwise smooth curve has a singularity at $\infty$.
7. Dual curves.

Let $C$ be a plane curve: $C=Z(f)$ where $f \in k[x, y]$, and let $\bar{C}$ be its projective closure. Thus, $\bar{C}=Z(\bar{f})$ where $\bar{f}=f^{h} \in k[x, y, z]$ is the homogenization of $f$. Recall that, letting $\left(\mathbb{P}^{2}\right)^{*}$ denote the collection of lines in the projective plane, $\mathbb{P}^{2}$, there is a one-to-one correspondence

$$
\begin{array}{rll}
\left(\mathbb{P}^{2}\right)^{*} & \leftrightarrow & \mathbb{P}^{2} \\
a x+b y+c z & \leftrightarrow & (a, b, c)
\end{array}
$$

We then just identify $\left(\mathbb{P}^{2}\right)^{*}$ and $\mathbb{P}^{2}$, referring interchangeably to $a x+b y+c z$ or $(a, b, c)$.
(a) Compute the equation for the tangent line to $C$ at a point $p \in C$. Since $C$ is a level set of $f$, the tangent line will be the line passing through $p$ and perpendicular to the gradient $\nabla f$.
(b) Prove Euler's formula: if $g \in k\left[x_{0}, \ldots, x_{n}\right]$ is homogeneous of degree $d$, then

$$
\begin{aligned}
\left(x_{0}, \ldots, x_{n}\right) \cdot \nabla g & =\sum_{i=0}^{n} x_{i} \frac{\partial g}{\partial x_{i}} \\
& =\operatorname{deg}(g) g
\end{aligned}
$$

(c) Show that the homogenization of the equation of the tangent line in part (a) gives the point

$$
\nabla \bar{f}(p)=\left(\frac{\partial \bar{f}}{\partial x}(p), \frac{\partial \bar{f}}{\partial y}(p), \frac{\partial \bar{f}}{\partial z}(p)\right) \in\left(\mathbb{P}^{2}\right)^{*} .
$$

[Hint: Euler's formula.] As usual, identify the point $p=(a, b) \in \mathbb{A}^{2}$ with $(a, b, 1) \in$ $\mathbb{P}^{2}$.
(d) Let $\bar{C}^{\circ}$ denote the nonsingular points of $\bar{C}$, i.e., those points $p \in \bar{C}$ such that $\nabla \bar{f}(p) \neq 0$. Define

$$
\begin{aligned}
\partial: \bar{C}^{\circ} & \rightarrow\left(\mathbb{P}^{2}\right)^{*}=\mathbb{P}^{2} \\
p & \mapsto \nabla \bar{f}(p)
\end{aligned}
$$

Definition. The dual curve to $C$, denoted $\hat{C}$, is the smallest projective algebraic set containing the closure of the image of $\partial$, i.e., the projective closure of im $\partial$.
(e) Compute the dual curve to $y^{2}=x^{3}$ by eliminating $x, y, z$ from the equations

$$
\nabla \bar{f}=(u, v, w), \quad y^{2}=x^{3}
$$

where $\bar{f}=z y^{2}-x^{3}$. To which point on the dual does the cusp point $(0,0,1)$ on $f$ correspond? (Hint: parametrize the curve by $t \mapsto\left(t^{2}, t^{3}, 1\right) \in \mathbb{P}^{2}$, then compose with the duality map $\partial$ ).
(f) Suppose there is line tangent to a plane curve at two points. What can you say about the dual curve?
(g) Let $C=Z(f)$ be a general plane conic, writing

$$
f(x, y, z)=a_{0} x^{2}+2 a_{1} x y+2 a_{2} x z+a_{3} y^{2}+2 a_{4} y z+a_{5} z^{2} .
$$

i. Find a symmetric $3 \times 3$ matrix $M$ such that

$$
f=\left(\begin{array}{lll}
x & y & z
\end{array}\right) M\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

We say that $M$ is the matrix corresponding to the conic $f$.
ii. Show that the dual to $C$ is the conic defined by $M^{-1}$. (Hint: Eliminate $x, y$, and $z$ from the system of equations $(u, v, w)=\nabla f$ and $f=0)$.

