PCMI 2008 Undergraduate Summer School
 Lecture 6: Projective space II

David Perkinson

Reed College
Portland, OR
Summer 2008

Homogeneous Coordinates

$\mathbb{P}^{n}=\left\{\right.$ lines in $\left.\mathbb{A}^{n+1}\right\}$

We name $\ell \in \mathbb{P}^{n}$, with any $p \in \ell$.
Equivalence relation on $\mathbb{A}^{n+1} \backslash\{0\}$

$$
p \sim \lambda p \text { for } \lambda \in k \backslash\{0\}
$$

$$
\mathbb{P}^{n}=\left(\mathbb{A}^{n+1} \backslash\{0\}\right) / \sim
$$

Standard open cover

Definition

$$
\begin{aligned}
U_{i}=U_{x_{i}} & =\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{P}^{n}: x_{i} \neq 0\right\} \\
& =Z\left(x_{i}\right)^{c}
\end{aligned}
$$

Charts

$$
\begin{aligned}
\phi_{i}: U_{i} & \rightarrow \mathbb{A}^{n} \\
\left(x_{0}, \ldots, x_{n}\right) & \mapsto\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{\hat{x}_{i}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)
\end{aligned}
$$

inverse

$$
\begin{aligned}
\psi_{i}: \mathbb{A}^{n} & \rightarrow U_{i} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(x_{1}, \ldots, 1, \ldots, x_{n}\right)
\end{aligned}
$$

\mathbb{P}^{n} is a manifold with atlas $\left\{\left(U_{i}, \phi_{i}\right)\right\}_{i=0}^{n}$.

Projective closure

$$
\begin{aligned}
X \subseteq \mathbb{A}^{n} & \subset \mathbb{P}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(1, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

$\bar{X}=$ smallest proj. alg. set of \mathbb{P}^{n} containing X

$$
I(\bar{X})=?
$$

The homogenization of $f \in k\left[x_{1}, \ldots, x_{n}\right]$ with respect to x_{0} is

$$
f^{h}=x_{0}^{\operatorname{deg} f} f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) .
$$

Example
If $f(x, y)=x^{2}-2 x^{3} y+y+2$, then

$$
\begin{aligned}
z^{4} f\left(\frac{x}{z}, \frac{y}{z}\right) & =z^{4}\left(\left(\frac{x}{z}\right)^{2}-2\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+2\right) \\
& =x^{2} z^{2}-2 x^{3} y+y z^{3}+2 z^{4} .
\end{aligned}
$$

Definition

The homogenization of an ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ with respect to x_{0} is

$$
I^{h}=\left(f^{h}: f \in I\right) \subseteq k\left[x_{0}, \ldots, x_{n}\right]
$$

HW

$$
I(\bar{X})=I(X)^{h}
$$

Example

$$
X=Z\left(y-x^{2}\right), \quad \bar{X}=Z\left(y z-x^{2}\right)
$$

Example

twisted cubic

$$
C=Z\left(y-x^{2}, z-x^{3}\right), \quad \bar{C}=Z\left(w y-x^{2}, z w-x y, y^{2}-x z\right)
$$

Caution

$$
X=Z\left(f_{1}, \ldots, f_{m}\right) \nRightarrow \quad \bar{X}=Z\left(f_{1}^{h}, \ldots, f_{m}^{h}\right) .
$$

The finite part of a projective algebraic set

$$
Y=Z(J) \subseteq \mathbb{P}^{n}, \quad J \subseteq k\left[x_{0}, \ldots, x_{n}\right], \quad \text { homogeneous }
$$

Choose some std. open set, say $U_{0} \subset \mathbb{P}^{n}$.
The finite part of Y is

$$
\begin{aligned}
Y_{*}=U_{0} \cap Y \subset U_{0} & \approx \mathbb{A}^{n} \\
\left(y_{0}, \ldots, y_{n}\right) & \mapsto\left(\frac{y_{1}}{y_{0}}, \ldots, \frac{y_{n}}{y_{0}}\right)
\end{aligned}
$$

$$
J_{*}=\left(f\left(1, x_{1}, \ldots, x_{n}\right): f \in J\right)
$$

$$
U_{0} \cap Y=Z\left(J_{*}\right)
$$

One-to-one correspondence

affine algebraic sets in \mathbb{A}^{n} not equal to \mathbb{A}^{n}

$$
\begin{gathered}
\mathfrak{\imath} \\
\text { projective algebraic sets in } \mathbb{P}^{n} \\
\text { with no component contained in or containing }\left\{x_{0}=0\right\}
\end{gathered}
$$

Points at ∞

$$
\begin{aligned}
x \subseteq \mathbb{A}^{n} & \subset \mathbb{P}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(1, x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Definition
The points at ∞ on X are the points

$$
\bar{X} \backslash X=\bar{X} \cap Z\left(x_{0}\right) .
$$

Examples

X	\bar{X}	$\bar{X} \backslash X$	∞
$y-x^{2}$	$z y-x^{2}$	$z=x^{2}=0$	$(0,1,0)$
$x y-1$	$x y-z^{2}$	$z=x y=0$	$(1,0,0)$ $(0,1,0)$ $x^{2}+y^{2}-1$
$x^{2}+y^{2}-z^{2}$	$z=x^{2}+y^{2}=0$	$(i, 1,0)$ $(1, i, 0)$	

HW
A plane conic is a circle iff it passes through the circular points at $\infty:(i, 1,0),(1, i, 0)$.

Changing coordinates

To see a point at infinity p on an alg. set X :

- Choose i such that $p_{i} \neq 0$, i.e., such that $p \in U_{i}$.
- Set $x_{i}=1$ in the equations defining \bar{X}.

Example

$$
\begin{aligned}
& x=Z\left(y-x^{2}\right), \quad \bar{X}=Z\left(z y-x^{2}\right) \\
& p=(0,1,0) \in U_{y} \\
& \bar{X} \cap U_{y} \approx Z\left(z-x^{2}\right) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& X=Z\left(x^{2}+y^{2}-1\right), \quad \bar{X}=Z\left(x^{2}+y^{2}-z^{2}\right) \\
& p=(\pm i, 1,0) \in U_{y} \\
& \bar{X} \cap U_{y} \approx Z\left(x^{2}+1-z^{2}\right)
\end{aligned}
$$

Duality

Definition

hyperplane in \mathbb{P}^{n} :

$$
H=Z\left(a_{0} x_{0}+\cdots+a_{n} x_{n}\right), \quad \text { not all } a_{i}=0 .
$$

The set of all hyperplanes in \mathbb{P}^{n} is called the dual projective space, denoted $\left(\mathbb{P}^{n}\right)^{*}$.

One-to-one correspondence

$$
\begin{aligned}
\mathbb{P}^{n} & \approx\left(\mathbb{P}^{n}\right)^{*} \\
p=\left(a_{0}, \ldots, a_{n}\right) & \leftrightarrow H_{p}=Z\left(a_{0} x_{0}+\cdots+a_{n} x_{n}\right)
\end{aligned}
$$

Example of duality

Two distinct points determine a unique line in \mathbb{P}^{2}.
Two distinct lines determine a unique point in \mathbb{P}^{2}.
Proof.
Points $\left(a_{0}, a_{1}, a_{2}\right),\left(b_{0}, b_{1}, b_{2}\right)$ lie on line $c_{0} x+c_{1} y+c_{2} z=0$ iff

$$
\left(c_{0}, c_{1}, c_{2}\right) \in \operatorname{ker}\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2}
\end{array}\right)
$$

Dually, lines $a_{0} x+a_{1} y+a_{2} z=0, b_{0} x+b_{1} y+b_{2} z=0$ contain point (c_{0}, c_{1}, c_{2}) iff

$$
\left(c_{0}, c_{1}, c_{2}\right) \in \operatorname{ker}\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2}
\end{array}\right)
$$

In either case, the kernel has dimension 1.

Conics

conic in \mathbb{P}^{2}

$$
C=Z\left(a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}\right)
$$

not all $a_{i}=0$.
One-to-one correspondence

$$
\begin{aligned}
\mathbb{P}^{5} & \approx\left\{\text { conics in } \mathbb{P}^{2}\right\} \\
\left(a_{0}, \ldots, a_{5}\right) & \leftrightarrow Z\left(a_{0} x_{0}^{2}+\cdots+a_{5} z^{2}\right)
\end{aligned}
$$

Fix $p=\left(p_{0}, p_{1}, p_{2}\right) \in \mathbb{P}^{2}$.
General conic: $a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}$.
conics passing through p

$$
\begin{aligned}
& \left\{\left(a_{0}, \ldots, a_{5}\right) \in \mathbb{P}^{5}:\right. \\
& \left.\quad a_{0} p_{0}^{2}+a_{1} p_{0} p_{1}+a_{2} p_{0} p_{2}+a_{3} p_{1}^{2}+a_{4} p_{1} p_{2}+a_{5} p_{2}^{2}=0\right\}
\end{aligned}
$$

hyperplane H_{q} with coefficients

$$
q=\left(p_{0}^{2}, p_{0} p_{1}, p_{0} p_{2}, p_{1}^{2}, p_{1} p_{2}, p_{2}^{2}\right) .
$$

Veronese embedding

$$
\begin{aligned}
\nu_{2}: \mathbb{P}^{2} & \rightarrow \mathbb{P}^{5} \\
(x, y, z) & \mapsto\left(x^{2}, x y, x z, y^{2}, y z, z^{2}\right)
\end{aligned}
$$

$\left\{\right.$ conics through $\left.p \in \mathbb{P}^{2}\right\}=H_{\nu_{2}(p)} \in\left(\mathbb{P}^{5}\right)^{*}$

Conics tangent to $x=0$

$$
\begin{aligned}
f(x, y, z)= & a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}=0 \\
x= & 0 \\
& f(0, y, z)=a_{3} y^{2}+a_{4} y z+a_{5} z^{2}=0
\end{aligned}
$$

The conics tangent to the line $x=0$ form the quadric hypersurface

$$
a_{4}^{2}-4 a_{3} a_{5}=0
$$

in \mathbb{P}^{5}.

