Homogeneous coordinates o	Standard open cover	Projective closure	Points at ∞ 0000	Duality oo	Conics 0000

PCMI 2008 Undergraduate Summer School Lecture 6: Projective space II

David Perkinson

Reed College Portland, OR

Summer 2008

Homogeneous coordinates

Standard open cover

Projective closure

Points at ∞

Duality

Conics

Homogeneous Coordinates

 $\mathbb{P}^n = \{ \text{lines in } \mathbb{A}^{n+1} \}$

We name $\ell \in \mathbb{P}^n$, with any $p \in \ell$.

Equivalence relation on $\mathbb{A}^{n+1} \setminus \{0\}$ $p \sim \lambda p$ for $\lambda \in k \setminus \{0\}$

$$\mathbb{P}^n = \left(\mathbb{A}^{n+1} \setminus \{0\}\right) / \sim$$

Homogeneous coordinates o Standard open cover

Projective closure

Points at ∞

Duality 00 Conics

Standard open cover

Definition

$$U_{i} = U_{x_{i}} = \{(x_{0}, \dots, x_{n}) \in \mathbb{P}^{n} : x_{i} \neq 0\} \\ = Z(x_{i})^{c}$$

Charts

$$\phi_i \colon U_i \to \mathbb{A}^n (\mathbf{x}_0, \dots, \mathbf{x}_n) \mapsto (\frac{\mathbf{x}_0}{\mathbf{x}_i}, \dots, \frac{\hat{\mathbf{x}}_i}{\mathbf{x}_i}, \dots, \frac{\mathbf{x}_n}{\mathbf{x}_i})$$

inverse $\psi_i \colon \mathbb{A}^n \to U_i$ $(x_1, \dots, x_n) \mapsto (x_1, \dots, 1, \dots, x_n)$

Homogeneous coordinates o	Standard open cover	Projective closure	Points at ∞	Duality 00	Conics 0000

\mathbb{P}^n is a manifold with atlas $\{(U_i, \phi_i)\}_{i=0}^n$.

Projective closure

$$X \subseteq \mathbb{A}^n \subset \mathbb{P}^n$$

 $(x_1,\ldots,x_n) \mapsto (1,x_1,\ldots,x_n)$

 \bar{X} = smallest proj. alg. set of \mathbb{P}^n containing X

$$l(\bar{X}) = ?$$

Homogeneous coordinates o	Standard open cover	Projective closure	Points at ∞ 0000	Duality oo	Conics 0000

The homogenization of $f \in k[x_1, ..., x_n]$ with respect to x_0 is

$$f^h = x_0^{\deg f} f(\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0}).$$

Example

If
$$f(x, y) = x^2 - 2x^3y + y + 2$$
, then
 $z^4 f(\frac{x}{z}, \frac{y}{z}) = z^4 \left(\left(\frac{x}{z}\right)^2 - 2\left(\frac{x}{z}\right)^3 \left(\frac{y}{z}\right) + 2 \right)$
 $= x^2 z^2 - 2x^3 y + y z^3 + 2z^4.$

Homogeneous coordinates o	Standard open cover	Projective closure	Points at ∞	Duality 00	Conics

Definition

The homogenization of an ideal $I \subseteq k[x_1, ..., x_n]$ with respect to x_0 is

$$I^h = (f^h : f \in I) \subseteq k[x_0, \ldots, x_n].$$

HW

$$I(\bar{X}) = I(X)^h$$

Homogeneous coordinates O	Standard open cover	Projective closure	Points at ∞ 0000	Duality 00	Conics

Example

$$X=Z(y-x^2),\qquad \bar{X}=Z(yz-x^2)$$

Example

twisted cubic

$$C = Z(y - x^2, z - x^3), \quad \bar{C} = Z(wy - x^2, zw - xy, y^2 - xz).$$

Caution

$$X = Z(f_1, \ldots, f_m) \quad \Rightarrow \quad \bar{X} = Z(f_1^h, \ldots, f_m^h).$$

Homogeneous coordinates	Standard open cover	Projective closure	Points at ∞	Duality	Conic
0	00	000000	0000	00	0000

The finite part of a projective algebraic set

 $Y = Z(J) \subseteq \mathbb{P}^n, \qquad J \subseteq k[x_0, \dots, x_n],$ homogeneous

Choose some std. open set, say $U_0 \subset \mathbb{P}^n$. The finite part of *Y* is

$$egin{array}{lll} Y_* = U_0 \cap Y \subset U_0 &pprox & \mathbb{A}^n \ (y_0,\ldots,y_n) &\mapsto & (rac{y_1}{y_0},\ldots,rac{y_n}{y_0}) \end{array}$$

$$J_* = (f(1, x_1, \dots, x_n) : f \in J)$$
$$U_0 \cap Y = Z(J_*)$$

Standard open cover

Projective closure

Points at ∞

Duality 00 Conics 0000

One-to-one correspondence

affine algebraic sets in \mathbb{A}^n not equal to \mathbb{A}^n

projective algebraic sets in \mathbb{P}^n

with no component contained in or containing $\{x_0 = 0\}$

$$egin{array}{ccc} X & Y_* \ \downarrow & \uparrow \ ar{X} & Y \end{array}$$

$$X \subseteq \mathbb{A}^n \subset \mathbb{P}^n$$

 $(x_1,\ldots,x_n) \mapsto (1,x_1,\ldots,x_n)$

Definition The points at ∞ on *X* are the points

$$\bar{X} \setminus X = \bar{X} \cap Z(x_0).$$

Homogeneous coordinates o	Standard open cover	Projective closure	Points at ∞ ○●○○	Duality 00	Conics 0000		
Examples							

Examples

X	Ā	$ar{m{X}} \setminus m{X}$	∞
$y - x^2$	$zy - x^2$	$z = x^2 = 0$	(0, 1, 0)
<i>xy</i> – 1	<i>xy</i> – <i>z</i> ²	z = xy = 0	(1,0,0) (0,1,0)
$x^2 + y^2 - 1$	$x^2 + y^2 - z^2$	$z = x^2 + y^2 = 0$	(<i>i</i> , 1, 0) (1, <i>i</i> , 0)

HW

A plane conic is a circle iff it passes through the circular points at ∞ : (i, 1, 0), (1, i, 0).

Points at ∞ 00●0

Du

Conics

Changing coordinates

To see a point at infinity p on an alg. set X:

- Choose *i* such that $p_i \neq 0$, i.e., such that $p \in U_i$.
- Set $x_i = 1$ in the equations defining \bar{X} .

Example

$$egin{aligned} X &= Z(y-x^2), & ar{X} &= Z(zy-x^2), \ p &= (0,1,0) \in U_y \ ar{X} \cap U_y &pprox Z(z-x^2). \end{aligned}$$

Homogeneous coordinates o	Standard open cover	Projective closure	Points at ∞ ○○○●	Duality 00	Conics 0000

Example $X = Z(x^2 + y^2 - 1), \quad \bar{X} = Z(x^2 + y^2 - z^2)$ $p = (\pm i, 1, 0) \in U_y$ $\bar{X} \cap U_y \approx Z(x^2 + 1 - z^2)$

Definition hyperplane in \mathbb{P}^n :

$$H = Z(a_0x_0 + \cdots + a_nx_n), \text{ not all } a_i = 0.$$

The set of all hyperplanes in \mathbb{P}^n is called the dual projective space, denoted $(\mathbb{P}^n)^*$.

One-to-one correspondence

$$\mathbb{P}^n \approx (\mathbb{P}^n)^*$$

 $p = (a_0, \dots, a_n) \leftrightarrow H_p = Z(a_0x_0 + \dots + a_nx_n)$

Standard open cover

Projective closure

Points at ∞

Duality

Conics 0000

Example of duality

Two distinct points determine a unique line in \mathbb{P}^2 .

Two distinct lines determine a unique point in \mathbb{P}^2 .

Proof.

Points $(a_0, a_1, a_2), (b_0, b_1, b_2)$ lie on line $c_0x + c_1y + c_2z = 0$ iff

$$(\mathit{c}_0, \mathit{c}_1, \mathit{c}_2) \in \mathsf{ker} \left(egin{array}{cc} \mathit{a}_0 & \mathit{a}_1 & \mathit{a}_2 \ \mathit{b}_0 & \mathit{b}_1 & \mathit{b}_2 \end{array}
ight)$$

Dually, lines $a_0x + a_1y + a_2z = 0$, $b_0x + b_1y + b_2z = 0$ contain point (c_0, c_1, c_2) iff

$$(\mathit{c}_0,\mathit{c}_1,\mathit{c}_2)\in \mathsf{ker}\left(egin{array}{ccc} \mathit{a}_0 & \mathit{a}_1 & \mathit{a}_2\ \mathit{b}_0 & \mathit{b}_1 & \mathit{b}_2 \end{array}
ight)$$

In either case, the kernel has dimension 1.

conic in \mathbb{P}^2 $C = Z(a_0x^2 + a_1xy + a_2xz + a_3y^2 + a_4yz + a_5z^2)$ not all $a_i = 0$.

One-to-one correspondence

$$\mathbb{P}^5 \approx \{ \text{conics in } \mathbb{P}^2 \}$$
$$(a_0, \dots, a_5) \leftrightarrow Z(a_0 x_0^2 + \dots + a_5 z^2)$$

Homogeneous coordinates o	Standard open cover	Projective closure	Points at ∞ 0000	Duality 00	Conics

Fix
$$p = (p_0, p_1, p_2) \in \mathbb{P}^2$$
.

General conic: $a_0x^2 + a_1xy + a_2xz + a_3y^2 + a_4yz + a_5z^2$.

conics passing through p

$$\left\{ (a_0, \dots, a_5) \in \mathbb{P}^5 : \\ a_0 p_0^2 + a_1 p_0 p_1 + a_2 p_0 p_2 + a_3 p_1^2 + a_4 p_1 p_2 + a_5 p_2^2 = 0 \right\}$$

hyperplane H_q with coefficients

$$q = (p_0^2, p_0 p_1, p_0 p_2, p_1^2, p_1 p_2, p_2^2).$$

Homogeneous coordinates o Standard open cover

Projective closure

Points at ∞ 0000 Duality

Conics

Veronese embedding

$$\begin{array}{rcl} \nu_2 \colon \mathbb{P}^2 & \to & \mathbb{P}^5 \\ (x,y,z) & \mapsto & (x^2,xy,xz,y^2,yz,z^2) \end{array}$$

 $ig\{ ext{conics through } oldsymbol{
ho}\in\mathbb{P}^2ig\}=\mathcal{H}_{\!
u_2(
ho)}\in(\mathbb{P}^5)^*$

Conics tangent to x = 0

$$f(x, y, z) = a_0 x^2 + a_1 x y + a_2 x z + a_3 y^2 + a_4 y z + a_5 z^2 = 0$$

x = 0

$$f(0, y, z) = a_3y^2 + a_4yz + a_5z^2 = 0$$

The conics tangent to the line x = 0 form the quadric hypersurface

$$a_4^2 - 4a_3a_5 = 0$$

in \mathbb{P}^5 .