In the following, let $S=k\left[x_{0}, \ldots, x_{n}\right]$.
\star 1. Show that an ideal $I \subseteq S$ is homogeneous iff each I contains the homogeneous components of each of its elements.
$\star 2$. If k is infinite and $f \in S$, show that f vanishes along a line through the origin iff each of its homogeneous components vanishes along the line.
3. Let $I \subsetneq S$ be a homogeneous ideal. Show that I is a prime ideal iff for all homogeneous polynomials f and g with $f g \in I$, either $f \in I$ or $g \in I$.
4. Show that the radical of a homogeneous ideal is homogeneous.
\star 5. Duality.
A hyperplane in \mathbb{P}^{n} is any projective algebraic set of the form $H=Z\left(a_{0} x_{0}+\cdots+a_{n} x_{n}\right)$ with each $a_{i} \in k$ and not all $a_{i}=0$. One may think of the coefficients as giving a point $p=\left(a_{0}, \ldots, a_{n}\right)$ in \mathbb{P}^{n}. We write $H^{*}=p$ and $p^{*}=H$.
(a) Show that this gives a well-defined, one-to-one correspondence between hyperplanes and points in \mathbb{P}^{n}.
(b) Show that $H^{* *}=H$ for each hyperplane H and $p^{* *}=p$ for each point p.
(c) Show that $p \in H$ iff $H^{*} \in p^{*}$.

* 6. Conics

A conic in the projective plane, \mathbb{P}^{2}, is any algebraic set of the form

$$
Z\left(a_{0} x^{2}+a_{1} x y+a_{2} x z+a_{3} y^{2}+a_{4} y z+a_{5} z^{2}\right)
$$

with each $a_{i} \in k$ and not all $a_{i}=0$. This sets up a one-to-one correspondence between points $\left(a_{0}, \ldots, a_{5}\right) \in \mathbb{P}^{5}$ and plane conics. Thus, projective 5 -space can be thought of as the set of all plane conics. (Note: to think about these conics as conics in the "ordinary" affine plane, set $z=1$ in the defining equation. For instance, $x^{2}+y^{2}-z^{2}=0$ gives the circle $x^{2}+y^{2}-1=0$.)
(a) Fix a point $p \in \mathbb{P}^{2}$. Describe the set of points in \mathbb{P}^{5} corresponding to conics in \mathbb{P}^{2} passing through p. (To be more concrete, take $p=(0,0,1)$ or $p=(1,1,1)$ to start.)
(b) Describe the set of points in \mathbb{P}^{5} corresponding to conics tangent to $x=0$. (By "tangent" we mean that if $f=0$ defines the conic, then the system given by $f=0$ and $x=0$ has only one solution, even assuming k is algebraically closed.)

