Projective space

Projective dictionary

Epilogue

PCMI 2008 Undergraduate Summer School Lecture 5: Projective Space I

David Perkinson

Reed College Portland, OR

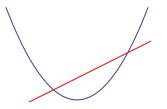
Summer 2008

Projective space

Projective dictionary

Epilogue

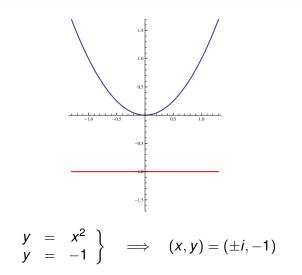
Every line meets the parabola $y = x^2$ in 2 points.



Projective space

Projective dictionary

Epilogue 00



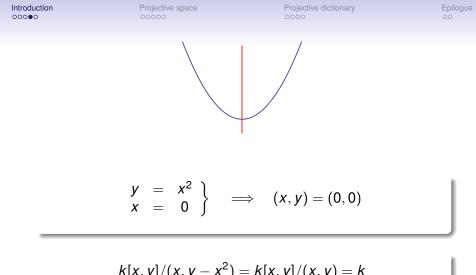
$$y = x^{2}$$

$$y = 0$$

$$y = (x, y) = (0, 0)$$

 $k[x,y]/(y,y-x^2) = k[x,y]/(y,x^2) \approx k[x]/(x^2) = \text{Span}_k\{1,x\}$

 $k[x,y]/(x,y) \approx k$



$$[\mathbf{x},\mathbf{y}]/(\mathbf{x},\mathbf{y}) = \mathbf{x}[\mathbf{x},\mathbf{y}]/(\mathbf{x},\mathbf{y}) =$$

Disturbing.

- Projective geometry is related to the idea of perspective from art.
- Curves are projectively equivalent if they are shadows of the same curve.
- The "points" of projective geometry are all lines through a special point.

Projective dictionary

Definition

$$\mathbb{P}^n_k = \{ \text{lines through the origin in } \mathbb{A}^{n+1}_k \}$$

= {one-dimensional subspaces of k^{n+1} }

Note

A point in \mathbb{P}_k^n is a line in affine (n+1)-space.

Projective space

Projective dictionary

Epilogue

Question

What kinds of polynomials vanish on subsets of projective space?

Definition

A polynomial is homogeneous if each of its monomials has the same degree.

Example

homogeneous: non-homogeneous:

$$3x^2yz - y^3z + 5z^4$$

 $x^2 - 4xy^4 + z^9$

Projective dictionary

Epilogue

Every polynomial is the sum of its homogeneous components:

$$f=f_0+f_1+\cdots+f_d$$

with f_i homogeneous of degree i.

Example $5_{0} + 3x + 2y_{1} + 2xy + z^{2}_{2} + x^{3}_{3}$

Proposition

Over an infinite field, f vanishes on a line through the origin iff each f_i does.

Projective space

Projective dictionary

Suppose *f* is homogeneous of degree *d*.

For all $\lambda \in k$ and $p \in \mathbb{A}^{n+1}$, we have

 $f(\lambda p) = \lambda^d f(p).$

Hence, for $\lambda \neq 0$,

$$f(p) = 0 \Longleftrightarrow f(\lambda p) = 0.$$

The point:

$$Z(f) \subset \mathbb{P}^n$$
 makes sense.

Projective space

Projective dictionary

Epilogue

Let
$$I \subseteq S = k[x_0, \ldots, x_n]$$
 be an ideal.

Definition

I is homogeneous if it is generated by homogeneous polynomials.

Example

$$I = (yz - x^2, y^2z - x^3 - xz^2)$$

Proposition

I is homogeneous iff it contains the homogeneous components of each of its elements.

Projective space

Projective dictionary • 0 0 0 Epilogue

Projective algebraic sets

$$S = k[x_0, \ldots, x_n], \quad I \subset S$$
 homogeneous

projective algebraic set

$$Z(I) = \{ p \in \mathbb{P}_k^n : f(p) = 0 \text{ for all homog. } f \in I \}$$

ideal of $X \subseteq \mathbb{P}_k^n$

 $I(X) = (f \in S : f \text{ homog.}, f(p) = 0 \text{ for all } p \in X)$

ntroduction	Projective space	Projectiv ⊙●○○	Projective dictionary o●oo	
Projecti	ve correspondence			1
Algebra			Geometry	
I	nomogeneous ideals c	of $S \iff s$	subsets of \mathbb{P}^n	
	1	\rightarrow	Z(I)	
	<i>I</i> (<i>X</i>)	<u> </u>	X	
As befo	re			1
$I(Z(J)) \supseteq J$ $Z(I(X)) \supseteq X$				

 $Z(I(Z(J))) = Z(J) \qquad I(Z(I(X))) = I(X)$

Caution! $Z(1) = Z(x_0, ..., x_n) = \emptyset \subset \mathbb{P}^n$

Int

Projective space

Projective dictionary

Epilogue oo

Definition

 $\mathfrak{m} := (x_0, \ldots, x_n)$ is the irrelevant ideal of *S*.

Theorem (Projective Nullstellensatz)

If k is algebraically closed and $J \subset S$ is a homogeneous ideal,

•
$$Z(J) = \emptyset \in \mathbb{P}^n \quad \Longleftrightarrow \quad \operatorname{rad} J \supseteq \mathfrak{m}.$$

•
$$Z(J) \neq \emptyset \in \mathbb{P}^n \implies I(Z(J)) = \operatorname{rad} J;$$

Note:

$$Z(J) = \emptyset \iff \operatorname{rad}(J) = S \text{ or } \mathfrak{m}.$$

Projective space

Projective dictionary

Epilogue

Projective correspondence

For *k* algebraically closed, there is a one-to-one correspondence:

Algebra	Geometry		
homogeneous radical ideals $\neq \mathfrak{m}$		algebraic subsets of \mathbb{P}^n	
Ι	\rightarrow	Z(1)	
I(X)	\leftarrow	X	

projective varieties

prime ideals \leftrightarrow irreducible projective algebraic sets

Projective space

$$00000$$
Projective space
 00000
Projective dictionary
 0000
Projective dictionary
 0000
Projective dictionary
 0000
Projective dictionary
 $C(y - x^2) \subset \mathbb{A}^2 \implies ? \subset \mathbb{P}^2$

$$Z(y - x^2) \subset \mathbb{A}^2 \implies Z(zy - x^2) \subset \mathbb{P}^2$$

$$Z(x) \subset \mathbb{A}^2 \implies Z(x) \subset \mathbb{P}^2$$

$$Z(x) \subset \mathbb{A}^2 \implies Z(x) \subset \mathbb{P}^2$$

$$Z(x) = x^2$$

$$x = 0$$

$$\Rightarrow (x, y, z) \in \{(0, 0, 1), (0, 1, 0)\}$$

Projective space

Projective dictionary

Epilogue

Theorem (Bezout's theorem)

Let X = Z(f) and Y = Z(g) be distinct curves in \mathbb{P}^2 over an algebraically closed field. Then, the number of points in their intersection of X, counting multiplicities, is

 $\sharp(X\cap Y)=(\deg f)(\deg g).$