PCMI 2008 Undergraduate Summer School
 Lecture 5: Projective Space I

David Perkinson

Reed College
Portland, OR
Summer 2008

Every line meets the parabola $y=x^{2}$ in 2 points.

$$
\left.\begin{array}{l}
y=x^{2} \\
y=-1
\end{array}\right\} \quad \Longrightarrow \quad(x, y)=(\pm i,-1)
$$

$$
\left.\begin{array}{l}
y=x^{2} \\
y=0
\end{array}\right\} \quad \Longrightarrow \quad(x, y)=(0,0)
$$

$$
k[x, y] /\left(y, y-x^{2}\right)=k[x, y] /\left(y, x^{2}\right) \approx k[x] /\left(x^{2}\right)=\operatorname{Span}_{k}\{1, x\}
$$

$$
k[x, y] /(x, y) \approx k
$$

$$
\left.\begin{array}{l}
y=x^{2} \\
x=0
\end{array}\right\} \quad \Longrightarrow \quad(x, y)=(0,0)
$$

$$
k[x, y] /\left(x, y-x^{2}\right)=k[x, y] /(x, y)=k
$$

Disturbing.

- Projective geometry is related to the idea of perspective from art.
- Curves are projectively equivalent if they are shadows of the same curve.
- The "points" of projective geometry are all lines through a special point.

Definition

$$
\begin{aligned}
\mathbb{P}_{k}^{n} & =\left\{\text { lines through the origin in } \mathbb{A}_{k}^{n+1}\right\} \\
& =\left\{\text { one-dimensional subspaces of } k^{n+1}\right\}
\end{aligned}
$$

Note

A point in \mathbb{P}_{k}^{n} is a line in affine $(n+1)$-space.

Question

What kinds of polynomials vanish on subsets of projective space?

Definition

A polynomial is homogeneous if each of its monomials has the same degree.

Example

homogeneous: $3 x^{2} y z-y^{3} z+5 z^{4}$
non-homogeneous: $\quad x^{2}-4 x y^{4}+z^{9}$

Every polynomial is the sum of its homogeneous components:

$$
f=f_{0}+f_{1}+\cdots+f_{d}
$$

with f_{i} homogeneous of degree i.
Example
$\underbrace{5}_{0}+\underbrace{3 x+2 y}_{1}+\underbrace{2 x y+z^{2}}_{2}+\underbrace{x^{3}}_{3}$

Proposition

Over an infinite field, f vanishes on a line through the origin iff each f_{i} does.

Suppose f is homogeneous of degree d.
For all $\lambda \in k$ and $p \in \mathbb{A}^{n+1}$, we have

$$
f(\lambda p)=\lambda^{d} f(p) .
$$

Hence, for $\lambda \neq 0$,

$$
f(p)=0 \Longleftrightarrow f(\lambda p)=0 .
$$

The point:
$Z(f) \subset \mathbb{P}^{n}$ makes sense.

Let $I \subseteq S=k\left[x_{0}, \ldots, x_{n}\right]$ be an ideal.

Definition

I is homogeneous if it is generated by homogeneous polynomials.

Example
$I=\left(y z-x^{2}, y^{2} z-x^{3}-x z^{2}\right)$

Proposition

I is homogeneous iff it contains the homogeneous components of each of its elements.

Projective algebraic sets

$S=k\left[x_{0}, \ldots, x_{n}\right], \quad I \subset S$ homogeneous

projective algebraic set

$$
Z(I)=\left\{p \in \mathbb{P}_{k}^{n}: f(p)=0 \text { for all homog. } f \in I\right\}
$$

ideal of $X \subseteq \mathbb{P}_{k}^{n}$

$$
I(X)=(f \in S: f \text { homog., } f(p)=0 \text { for all } p \in X)
$$

Projective correspondence
Algebra
Geometry
homogeneous ideals of $S \longleftrightarrow$ subsets of \mathbb{P}^{n}

As before

$$
\begin{array}{ll}
I(Z(J)) \supseteq J & Z(I(X)) \supseteq X \\
Z(I(Z(J)))=Z(J) & I(Z(I(X)))=I(X)
\end{array}
$$

Caution!
$Z(1)=Z\left(x_{0}, \ldots, x_{n}\right)=\emptyset \subset \mathbb{P}^{n}$

Definition

$\mathfrak{m}:=\left(x_{0}, \ldots, x_{n}\right)$ is the irrelevant ideal of S.
Theorem (Projective Nullstellensatz)
If k is algebraically closed and $J \subset S$ is a homogeneous ideal,

- $Z(J)=\emptyset \in \mathbb{P}^{n} \quad \Longleftrightarrow \quad \operatorname{rad} J \supseteq \mathfrak{m}$.
- $Z(J) \neq \emptyset \in \mathbb{P}^{n} \quad \Longrightarrow \quad I(Z(J))=\operatorname{rad} J$;

Note:

$$
Z(J)=\emptyset \quad \Longleftrightarrow \quad \operatorname{rad}(J)=S \quad \text { or } \mathfrak{m} .
$$

Projective correspondence

For k algebraically closed, there is a one-to-one correspondence:

Algebra

Geometry
homogeneous radical ideals $\neq \mathfrak{m} \longleftrightarrow$ algebraic subsets of \mathbb{P}^{n}

projective varieties
prime ideals \leftrightarrow irreducible projective algebraic sets

$$
Z\left(y-x^{2}\right) \subset \mathbb{A}^{2} \quad \Longrightarrow \quad ? \subset \mathbb{P}^{2}
$$

$$
Z\left(y-x^{2}\right) \subset \mathbb{A}^{2} \quad \Longrightarrow \quad Z\left(z y-x^{2}\right) \subset \mathbb{P}^{2}
$$

$$
Z(x) \subset \mathbb{A}^{2} \quad \Longrightarrow \quad Z(x) \subset \mathbb{P}^{2}
$$

$$
\left.\begin{array}{rl}
z y & =x^{2} \\
x & =0
\end{array}\right\} \Longrightarrow(x, y, z) \in\{(0,0,1),(0,1,0)\}
$$

Theorem (Bezout's theorem)
Let $X=Z(f)$ and $Y=Z(g)$ be distinct curves in \mathbb{P}^{2} over an algebraically closed field. Then, the number of points in their intersection of X, counting multiplicities, is

$$
\sharp(X \cap Y)=(\operatorname{deg} f)(\operatorname{deg} g) .
$$

