1. Find the (Krull) dimension of the following rings:
\star (a) k, where k is a field.
\star (b) \mathbb{Z}.
(c) $\mathbb{Z}[x]$.
(d) The Gaussian integers, $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$.
2. Find a ring which is not a field with (Krull) dimension equal to zero.
\star 3. Prove that the plane nodal cubic curve defined by $y^{2}=x^{3}+x^{2}$ has dimension 1 by examining its quotient field. (Hint: recall the parametrization of this curve given in an earlier problem set.)

* 4. (From Hartshorne's "Algebraic geometry".) Show that the origin is a singular point for each of the following curves in \mathbb{A}_{k}^{2} assuming the characteristic of k is not 2 . Match up the curves with the sketches given below.
(a) $x^{2}=x^{4}+y^{4}$;
(b) $x y=x^{6}+y^{6}$;
(c) $x^{3}=y^{2}+x^{4}+y^{4}$;
(d) $x^{2} y+x y^{2}=x^{4}+y^{4}$.

* 5. (From Hartshorne's "Algebraic geometry".) Locate the singular points and describe the singularities of the following surfaces in \mathbb{A}_{k}^{3}, again assuming the characteristic of k is not 2. Match up the surfaces with the sketches given below.
(a) $x y^{2}=z^{2}$;
(b) $x^{2}+y^{2}=z^{2}$;
(c) $x y+x^{3}+y^{3}=0$.

6. Find the singularities of the quartic

$$
50 x y\left((x+y-1)^{2}-x y\right)-(x+y)^{2}(x+y-1)^{2}=0
$$

and sketch the curve. (Hint: Using Mathematica/Maple/Matlab/Sage would make this problem a lot easier.)
7. The twisted cubic is the curve, T, given parametrically by $x=t, y=t^{2}$, and $z=t^{3}$.
(a) The osculating developable, $\operatorname{Osc}(T)$, of the twisted cubic is the union of all tangent lines to T. Parametrize $\operatorname{Osc}(T)$ with a function $h(s, t)$ such that $h(0, t)=\left(t, t^{2}, t^{3}\right)$.
(b) The surface $\operatorname{Osc}(T)$ is defined by the equation

$$
3 x^{2} y^{2}-4 x^{3} z-4 y^{3}+6 x y z-z^{2}=0
$$

Show that $\operatorname{Osc}(T)$ is singular exactly along the twisted cubic (which, of course, lies on the surface).

7. Consider the curve X given parametrically by $x=t^{3}, y=t^{4}, z=t^{5}$.
(a) Show that $I(X)=\left(-x^{3}+y z,-y^{2}+x z, x^{2} y-z^{2}\right)$. By the way, note that the curve sits on the surface defined by $x^{2} y=z^{2}$.

(b) Show that $I(X)$ cannot be generated by two elements.
(c) Calculate the singularities of X.
9. Consider the curve X defined by cuspidal cubic defined by $y^{2}=x^{3}$.
\star (a) Show that X is singular at $(0,0)$ using Zariski's definition, i.e., by calculating the vector space dimension of $\mathfrak{m} / \mathfrak{m}^{2}$ where \mathfrak{m} is the maximal ideal for the point $(0,0)$ in the coordinate ring for X.
(b) Show that X is nonsingular at $(1,1)$ using Zariski's definition. (Hints: Find the equation for the tangent line to X at the point $(1,1)$ and use it to show that $x-1=\alpha(y-1)$ for some constant α. You will need to show the equation is in the square of the maximal ideal for $(1,1)$ in $A(X)$.)
10. Show that \mathbb{Z} is regular (nonsingular).
11. Find a curve in \mathbb{A}_{k}^{2} for which every point is singular.
12. Show that the singular points on a variety form an algebraic set.
\star 13. Let $p=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$, and let $M_{p}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \subset k\left[x_{1}, \ldots, x_{n}\right]$. During the lecture, we defined the mapping

$$
\begin{aligned}
\nabla_{p}: M_{p} & \rightarrow k^{n} \\
f & \mapsto \nabla f(p)
\end{aligned}
$$

(a) Prove that ∇_{p} is onto and $\operatorname{ker} \nabla_{p}=M_{p}^{2}$. Hence, ∇_{p} induces an isomorphism $M_{p} / M_{p}^{2} \approx k^{n}$. (Hint: for the kernel, consider Taylor series about the point p.)
(b) Let X be an algebraic set in \mathbb{A}_{k}^{n} with ideal $I(X)=\left(f_{1}, \ldots, f_{m}\right)$. Suppose $p \in X$. Show that

$$
\nabla_{p}(I(X))=\operatorname{Span}_{k}\left\{\nabla f_{1}(p), \ldots, \nabla f_{m}(p)\right\}
$$

Thus, the definition of nonsingularity given during the lecture does not depend on the choice of generators of $I(X)$.

