PCMI USS 2008

- 1. Find the (Krull) dimension of the following rings:
 - \star (a) k, where k is a field.
 - ★ (b) ℤ.
 - (c) $\mathbb{Z}[x]$.
 - (d) The Gaussian integers, $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$
- 2. Find a ring which is not a field with (Krull) dimension equal to zero.
- * 3. Prove that the plane nodal cubic curve defined by $y^2 = x^3 + x^2$ has dimension 1 by examining its quotient field. (Hint: recall the parametrization of this curve given in an earlier problem set.)
- * 4. (From Hartshorne's "Algebraic geometry".) Show that the origin is a singular point for each of the following curves in \mathbb{A}_k^2 assuming the characteristic of k is not 2. Match up the curves with the sketches given below.
 - (a) $x^2 = x^4 + y^4;$
 - (b) $xy = x^6 + y^6;$
 - (c) $x^3 = y^2 + x^4 + y^4;$
 - (d) $x^2y + xy^2 = x^4 + y^4$.

- * 5. (From Hartshorne's "Algebraic geometry".) Locate the singular points and describe the singularities of the following surfaces in \mathbb{A}^3_k , again assuming the characteristic of k is not 2. Match up the surfaces with the sketches given below.
 - (a) $xy^2 = z^2$;
 - (b) $x^2 + y^2 = z^2;$
 - (c) $xy + x^3 + y^3 = 0.$

6. Find the singularities of the quartic

$$50xy((x+y-1)^2 - xy) - (x+y)^2(x+y-1)^2 = 0$$

and sketch the curve. (Hint: Using Mathematica/Maple/Matlab/Sage would make this problem a lot easier.)

- 7. The *twisted cubic* is the curve, T, given parametrically by x = t, $y = t^2$, and $z = t^3$.
 - (a) The osculating developable, Osc(T), of the twisted cubic is the union of all tangent lines to T. Parametrize Osc(T) with a function h(s,t) such that $h(0,t) = (t,t^2,t^3)$.
 - (b) The surface Osc(T) is defined by the equation

$$3x^2y^2 - 4x^3z - 4y^3 + 6xyz - z^2 = 0.$$

Show that Osc(T) is singular exactly along the twisted cubic (which, of course, lies on the surface).

- \Box 7. Consider the curve X given parametrically by $x = t^3$, $y = t^4$, $z = t^5$.
 - (a) Show that $I(X) = (-x^3 + yz, -y^2 + xz, x^2y z^2)$. By the way, note that the curve sits on the surface defined by $x^2y = z^2$.

- (b) Show that I(X) cannot be generated by two elements.
- (c) Calculate the singularities of X.
- 9. Consider the curve X defined by cuspidal cubic defined by $y^2 = x^3$.
 - * (a) Show that X is singular at (0,0) using Zariski's definition, i.e., by calculating the vector space dimension of $\mathfrak{m}/\mathfrak{m}^2$ where \mathfrak{m} is the maximal ideal for the point (0,0) in the coordinate ring for X.
 - \Box (b) Show that X is nonsingular at (1,1) using Zariski's definition. (Hints: Find the equation for the tangent line to X at the point (1,1) and use it to show that $x 1 = \alpha(y 1)$ for some constant α . You will need to show the equation is in the square of the maximal ideal for (1,1) in A(X).)
- 10. Show that \mathbb{Z} is regular (nonsingular).
- 11. Find a curve in \mathbb{A}_k^2 for which every point is singular.

- 12. Show that the singular points on a variety form an algebraic set.
- * 13. Let $p = (a_1, \ldots, a_n) \in \mathbb{A}^n$, and let $M_p = (x_1 a_1, \ldots, x_n a_n) \subset k[x_1, \ldots, x_n]$. During the lecture, we defined the mapping

$$\nabla_p \colon M_p \to k^n \\
f \mapsto \nabla f(p)$$

- (a) Prove that ∇_p is onto and $\ker \nabla_p = M_p^2$. Hence, ∇_p induces an isomorphism $M_p/M_p^2 \approx k^n$. (Hint: for the kernel, consider Taylor series about the point p.)
- (b) Let X be an algebraic set in \mathbb{A}_k^n with ideal $I(X) = (f_1, \dots, f_m)$. Suppose $p \in X$. Show that

$$\nabla_p(I(X)) = \operatorname{Span}_k \{ \nabla f_1(p), \dots, \nabla f_m(p) \}.$$

Thus, the definition of nonsingularity given during the lecture does not depend on the choice of generators of I(X).