Singularities

# PCMI 2008 Undergraduate Summer School Lecture 4: Dimension, singularities.

**David Perkinson** 

Reed College Portland, OR

Summer 2008



#### Cantor to Dedekind (1877):

Your latest reply about our work was so unexpected and so novel that in a manner of speaking I will not be able to attain a certain composure until I have had from you, my very dear friend, a decision on its validity. As long as you have not confirmed it, I can only say: I see it but I don't believe it ... the distinction between domains of different dimensions must be sought for in quite another way than by the characteristic number of independent coordinates.

# It's not the number of equations.

The curve X given parametrically by

$$x=t^3, \qquad y=t^4, \qquad z=t^5$$

has ideal

$$I(X) = (-x^3 + yz, -y^2 + xz, x^2y - z^2).$$

#### Challenge!

Prove this and show that I(X) needs at least three generators.

#### Assumptions

- k is algebraically closed.
- $X \subseteq \mathbb{A}_k^n$  is a variety.
- Thus, I(X) is prime and

$$A(X) = R/I(X)$$

is a domain.

#### Goal

Define dim X using its coordinate ring A(X).

Singularities

# **Dimension: Version 1**

# **Quotient fields**

#### Definition

The quotient field of a domain A is its field of fractions

$$\mathcal{K}(\mathcal{A}) = \left\{ rac{f}{g} : g 
eq 0 
ight\}$$

Example

$$K(\mathbb{Z}) = \mathbb{Q}$$
$$K(k[x]) = k(x)$$

# Algebraic independence

Let  $k \subset K$  be fields, and let  $S \subset K$ .

## Definition

The set *S* is algebraically independent over *k* if for every subset  $\{s_1, \ldots, s_n\} \subseteq S$  with  $n \ge 1$  and every nonzero polynomial  $f(x_1, \ldots, x_n)$  with coefficients in *k*, we have  $f(s_1, \ldots, s_n) \ne 0$ .

#### Example

- $x, y \in k(x, y)$  are algebraically independent over k.
- $\pi \in \mathbb{R}$  is algebraically independent over  $\mathbb{Q}$ . (Lindemann, 1882)
- x<sup>2</sup>, x<sup>4</sup> + 3x<sup>2</sup> − 1 ∈ k(x) are not algebraically independent over k.

Singularities

# Transcendence degree

#### Definition

The transcendence degree of K over a subfield k is the maximal size of an algebraically independent subset of K over k.

#### Example

 $\mathrm{tr.deg}(k(x_1,\ldots,x_n))=n$ 

#### Definition

The dimension of the variety X is the transcendence degree of its quotient field, K(X) := K(A(X)).

#### Example

• dim
$$(\mathbb{A}^n_k) = n$$

$$A(\mathbb{A}_k^n) = k[x_1,\ldots,x_n], \qquad K(\mathbb{A}_k^n) = k(x_1,\ldots,x_n).$$

• 
$$X = Z(y^2 - x^3) \subset \mathbb{A}^2_k$$
.  
 $k[x, y]/(y^2 - x^3) \approx k[t^2, t^3]$   
 $f(x, y) \mapsto f(t^2, t^3)$   
 $K(X) \approx k(t) \Longrightarrow \dim(X) = 1$ .

Singularities

# Dimension: Version 2 (Krull, 1937)

Let *A* be any ring.

#### Definition

The height of a prime ideal  $\mathfrak{p} \subseteq A$  is the largest *d* such that there exists a chain of distinct prime ideals

$$\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_d = \mathfrak{p}$$

#### Definition

```
\dim A = \sup\{\operatorname{height}(\mathfrak{p}) : \mathfrak{p} \text{ a prime of } A\}.
```

#### Definition

 $\dim X = \dim A(X).$ 



# Example

 $X = Z(z - x^2 - y^2) \subset \mathbb{A}^3.$ In k[x, y, z],

$$(z - x^2 - y^2) \subset (z - x^2 - y^2, x) \subset (z - x^2 - y^2, x, y)$$

 $\ln k[x,y,z],$ 

$$(z-x^2-y^2) \subset \underbrace{(z-x^2-y^2,x)}_{(z-y^2,x)} \subset \underbrace{(z-x^2-y^2,x,y)}_{(x,y,z)}.$$

In  $A(X) = k[x, y, z]/(z - x^2 - y^2)$ ,

 $(0)\subset (x)\subset (x,y).$ 

Singularities

# Singularities



# Gradient

#### Definition

The gradient of a polynomial  $f \in k[x_1, \ldots, x_n]$  is

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

#### Fact from multivariable calculus:

Suppose *p* lies on the level set defined by f = 0.

Then  $\nabla f(p)$  is perpendicular to the level set f = 0 at the p.

$$p \in X \subseteq \mathbb{A}^n$$
 a variety with  $I(X) = (f_1, \ldots, f_m)$ .

## Definition The variety X is nonsingular at p if

$$\dim \operatorname{Span}_k \{\nabla f_1(p), \ldots, \nabla f_m(p)\} = n - \dim X.$$

#### Question: What about arbitrary rings?

Is it possible to define nonsingularity without reference to polynomials and derivatives?

# Exercise

$$M_p = (x_1 - a_1, \dots, x_n - a_n) \subset R = k[x_1, \dots, x_n]$$
  
Define

$$abla_{p}: M_{p} \rightarrow k^{n}$$
 $f \mapsto \nabla f(p)$ 

Suppose  $p \in X$ . Then

• If 
$$I(X) = (f_1, ..., f_m)$$
,

 $\nabla_{\rho}(I(X)) = \operatorname{Span}_{k} \{ \nabla f_{1}(\rho), \ldots, \nabla f_{m}(\rho) \}.$ 

- X is nonsingular at p iff  $\dim_k \nabla_p(I(X)) = n \dim X$ .
- $\nabla_{\rho}$  onto and ker  $\nabla_{\rho} = M_{\rho}^2$ , hence,  $\nabla_{\rho}$  induces

$$M_p/M_p^2 \approx k^n$$
.

#### Important aside

Since X is nonsingular at p iff  $\dim_k \nabla_p(I(X)) = n - \dim X$ , the notion of singularity does not depend on the choice of generators  $f_1, \ldots, f_m$  for *I*.

Singularities

Let  $\mathfrak{m}_{\rho} = M_{\rho} \mod I(X)$ .

• 
$$\mathfrak{m}_p/\mathfrak{m}_p^2 \approx M_p/(I(X) + M_p^2).$$

• An exact sequence of vector spaces:

$$0 \longrightarrow (I(X) + M_{\rho}^{2})/M_{\rho}^{2} \longrightarrow M_{\rho}/M_{\rho}^{2} \longrightarrow M_{\rho}/(I(X) + M_{\rho}^{2}) \longrightarrow 0$$

$$\begin{array}{c} \nabla_{\downarrow} \wr & & & \downarrow \wr \\ \nabla_{\rho}(I(X)) & \kappa^{n} & \mathfrak{m}_{\rho}/\mathfrak{m}_{\rho}^{2} \end{array}$$

• rank-nullity  $\Longrightarrow$ 

$$\dim_k \mathfrak{m}_p / \mathfrak{m}_p^2 = n - \dim_k \nabla_p(I(X))$$
  
= dim X iff X is nonsingular at p

# Definition

A ring A is regular (nonsingular) if for each maximal ideal  $\mathfrak{m}\subset A,$  we have

$$\dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim A$$

where  $k = A/\mathfrak{m}$ .