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Dimension

Cantor to Dedekind (1877):

Your latest reply about our work was so unexpected
and so novel that in a manner of speaking I will not be
able to attain a certain composure until I have had
from you, my very dear friend, a decision on its
validity. As long as you have not confirmed it, I can
only say: I see it but I don’t believe it . . . the distinction
between domains of different dimensions must be
sought for in quite another way than by the
characteristic number of independent coordinates.
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It’s not the number of equations.

The curve X given parametrically by

x = t3, y = t4, z = t5

has ideal

I(X ) = (−x3 + yz,−y2 + xz, x2y − z2).

Challenge!
Prove this and show that I(X ) needs at least three generators.
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Assumptions
k is algebraically closed.
X ⊆ An

k is a variety.
Thus, I(X ) is prime and

A(X ) = R/I(X )

is a domain.

Goal
Define dim X using its coordinate ring A(X ).
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Dimension: Version 1
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Quotient fields

Definition
The quotient field of a domain A is its field of fractions

K (A) =

{
f
g

: g 6= 0
}

Example

K (Z) = Q

K (k [x ]) = k(x)
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Algebraic independence

Let k ⊂ K be fields, and let S ⊂ K .

Definition
The set S is algebraically independent over k if for every subset
{s1, . . . , sn} ⊆ S with n ≥ 1 and every nonzero polynomial
f (x1, . . . , xn) with coefficients in k , we have f (s1, . . . , sn) 6= 0.

Example
x , y ∈ k(x , y) are algebraically independent over k .
π ∈ R is algebraically independent over Q.
(Lindemann, 1882)
x2, x4 + 3x2 − 1 ∈ k(x) are not algebraically independent
over k .
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Transcendence degree

Definition
The transcendence degree of K over a subfield k is the
maximal size of an algebraically independent subset of K
over k .

Example
tr.deg(k(x1, . . . , xn)) = n
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Definition
The dimension of the variety X is the transcendence degree of
its quotient field, K (X ) := K (A(X )).

Example
dim(An

k ) = n

A(An
k ) = k [x1, . . . , xn], K (An

k ) = k(x1, . . . , xn).

X = Z (y2 − x3) ⊂ A2
k .

k [x , y ]/(y2 − x3) ≈ k [t2, t3]

f (x , y) 7→ f (t2, t3)

K (X ) ≈ k(t) =⇒ dim(X ) = 1.
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Dimension: Version 2 (Krull, 1937)
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Let A be any ring.

Definition
The height of a prime ideal p ⊆ A is the largest d such that
there exists a chain of distinct prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pd = p

Definition

dim A = sup{height(p) : p a prime of A}.

Definition

dim X = dim A(X ).
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Example
X = An, A(X ) = k [x1, . . . , xn]

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn)
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Example

X = Z (z − x2 − y2) ⊂ A3.

In k [x , y , z],

(z − x2 − y2) ⊂ (z − x2 − y2, x) ⊂ (z − x2 − y2, x , y).

In k [x , y , z],

(z − x2 − y2) ⊂ (z − x2 − y2, x)︸ ︷︷ ︸
(z−y2,x)

⊂ (z − x2 − y2, x , y)︸ ︷︷ ︸
(x ,y ,z)

.

In A(X ) = k [x , y , z]/(z − x2 − y2),

(0) ⊂ (x) ⊂ (x , y).
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Singularities
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Gradient

Definition
The gradient of a polynomial f ∈ k [x1, . . . , xn] is

∇f =

(
∂f
∂x1

, . . . ,
∂f
∂xn

)

Fact from multivariable calculus:
Suppose p lies on the level set defined by f = 0.

Then ∇f (p) is perpendicular to the level set f = 0 at the p.
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p ∈ X ⊆ An a variety with I(X ) = (f1, . . . , fm).

Definition
The variety X is nonsingular at p if

dim Spank{∇f1(p), . . . ,∇fm(p)} = n − dim X .

Question: What about arbitrary rings?
Is it possible to define nonsingularity without reference to
polynomials and derivatives?
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Exercise
Mp = (x1 − a1, . . . , xn − an) ⊂ R = k [x1, . . . , xn]

Define

∇p : Mp → kn

f 7→ ∇f (p)

Suppose p ∈ X . Then
If I(X ) = (f1, . . . , fm),

∇p(I(X )) = Spank{∇f1(p), . . . ,∇fm(p)}.

X is nonsingular at p iff dimk ∇p(I(X )) = n − dim X .
∇p onto and ker∇p = M2

p , hence, ∇p induces

Mp/M2
p ≈ kn.
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Important aside
Since X is nonsingular at p iff dimk ∇p(I(X )) = n − dim X , the
notion of singularity does not depend on the choice of
generators f1, . . . , fm for I.
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Let mp = Mp mod I(X ).

mp/m2
p ≈ Mp/(I(X ) + M2

p ).

An exact sequence of vector spaces:

0 // (I(X ) + M2
p )/M2

p
//

∇ o
��

Mp/M2
p

//

∇ o

��

Mp/(I(X ) + M2
p ) //

o
��

0

∇p(I(X )) kn mp/m2
p

rank-nullity =⇒

dimk mp/m2
p = n − dimk ∇p(I(X ))

= dim X iff X is nonsingular at p
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Definition
A ring A is regular (nonsingular) if for each maximal ideal
m ⊂ A, we have

dimk m/m2 = dim A

where k = A/m.
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