\star 1. For each of the polynomial mappings $X \rightarrow Y$, describe corresponding ring homomorphisms, $A(Y) \rightarrow A(X)$, using the notation of problem 2.
(a)

$$
\begin{aligned}
\phi: \mathbb{A}^{2} & \rightarrow \mathbb{A}^{3} \\
(x, y) & \mapsto\left(y-x^{2}, x y, x^{3}+2 y^{2}\right)
\end{aligned}
$$

(b) $X=\mathbb{A}^{1}$ and $Y=Z\left(\left(y-x^{3}, z-x y\right) \subset \mathbb{A}^{3}\right.$

$$
\begin{array}{rll}
\phi: X & \rightarrow Y & \\
t & \mapsto & \left(t, t^{3}, t^{4}\right)
\end{array}
$$

$\star 2$. For each of the ring homomorphisms $A(Y) \rightarrow A(X)$, describe the corresponding morphism of algebraic sets, $X \rightarrow Y$, using the notation of problem 1.
(a)

$$
\begin{aligned}
\sigma: k[x, y] & \rightarrow k[t] \\
x & \mapsto t^{2}-1 \\
y & \mapsto t\left(t^{2}-1\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma: k[s, t, u, w] /\left(s^{2}-w, s w-t u\right) & \rightarrow K[x, y, z] /(x y-z) \\
s & \mapsto x y \\
t & \mapsto y z \\
u & \mapsto x z \\
w & \mapsto z^{2}
\end{aligned}
$$

The morphism constructed here is a mapping of the saddle surface to a surface in \mathbb{A}^{4}.
3. Show that the mapping in 1 b , above, is an isomorphism by showing that the induced mappings of coordinate rings is an isomorphism of rings.
\star 4. In 2a, above, let C denote the image of the corresponding mapping, $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$. Compute $I(C)$. Draw a picture of C letting $k=\mathbb{R}$.
5. We have seen that the parabola, $Z\left(y-x^{2}\right)$, is isomorphic to \mathbb{A}^{1}. Show that the same is not true of the hyperbola, $Z(x y-1)$. For a challenge consider the circle $Z\left(x^{2}+y^{2}-1\right)$. Is it ever isomorphic to the parabola? What if the characteristic of k is 2 ?
6. Zariski closure.

In a previous problem set, we discussed the Zariski topology on \mathbb{A}^{n}. The closed sets of the topology are taken to be algebraic sets, i.e., sets of the form $Z(I)$ where I is an ideal of $R=k\left[x_{1}, \ldots, x_{n}\right]$. Consider \mathbb{A}^{n} with the Zariski topology.

* (a) Let $X \subseteq \mathbb{A}^{n}$. Show that $Z(I(X))$ is the closure of set X. This means that $Z(I(X))$ smallest closed set containing X. (Show that if Y is a closed set containing X, then $Y \supseteq Z(I(X))$.)
(b) What is the closure (in the Zariski topology!) of the open unit disc centered at the origin in \mathbb{R}^{2} ?
(c) What is the closure of the set $\{(n, n): n \in \mathbb{Z}\}$ in $\mathbb{A}_{\mathbb{Q}}^{2}$?
(d) Show that over an algebraically closed field (or just an infinite field), the closure of any nonempty open set of \mathbb{A}^{n} is \mathbb{A}^{n}, i.e., every nonempty open set is dense. (Again: this is quite a difference from the usual topology in the case of $k=\mathbb{R}$ or \mathbb{C}.)

7. Is the composition of two polynomial mappings necessarily a polynomial mapping?
8. Consider the curve $C=Z\left(y^{3}-x^{4}\right) \subset \mathbb{A}^{2}$. Find a mapping $\mathbb{A}^{1} \rightarrow C$ that is one-to-one and onto but not an isomorphism.
\star 9. Suppose that k is algebraically closed, and let $X \subseteq \mathbb{A}_{k}^{n}$ be an algebraic set. Show that algebraic sets (respectively, varieties, points) contained in X are in one-to-one correspondence with radical ideals (respectively, prime ideals, maximal ideals) containing $I(X)$.
9. Degeneracy locii.
(a) Show that the set of singular $n \times n$ matrices forms an algebraic set in $\mathbb{A}^{n^{2}}$. (An $n \times n$ matrix is singular if it has rank less than n.)
(b) Fix a nonnegative integer r. Show that $m \times n$ matrices of rank less than r forms an algebraic set in $\mathbb{A}^{m n}$.
(c) Show that the above algebraic sets are varieties.
10. Let $\sigma: B \rightarrow A$ be a homomorphism of rings. Show that if $\mathfrak{p} \subseteq A$ is a prime ideal, then $\sigma^{-1}(\mathfrak{p})$ is a prime ideal of B. What if \mathfrak{p} is a maximal ideal?
11. Surjectivity.

Let $\phi: X \rightarrow Y$ be a morphism of algebraic sets, and let $\tilde{\phi}: A(Y) \rightarrow A(X)$ be the corresponding homomorphism of coordinate rings.
(a) Show that if $\tilde{\phi}$ is onto, then X is isomorphic to the algebraic set $Z(\operatorname{ker} \tilde{\phi}) \subseteq Y$.
(b) Show that if ϕ is onto, then $\operatorname{ker} \tilde{\phi}=(0)$, i.e., $\tilde{\phi}$ is one-to-one.

