PCMI USS 2008

- * 1. For each of the polynomial mappings $X \to Y$, describe corresponding ring homomorphisms, $A(Y) \to A(X)$, using the notation of problem 2.
 - (a)

$$\begin{array}{rcl} \phi: \mathbb{A}^2 & \to & \mathbb{A}^3 \\ (x,y) & \mapsto & (y-x^2, xy, x^3+2y^2) \end{array}$$
(b) $X = \mathbb{A}^1$ and $Y = Z((y-x^3, z-xy) \subset \mathbb{A}^3 \\ \phi: X & \to Y \\ t & \mapsto & (t,t^3,t^4) \end{array}$

 σ

* 2. For each of the ring homomorphisms $A(Y) \to A(X)$, describe the corresponding morphism of algebraic sets, $X \to Y$, using the notation of problem 1.

(a)

$$\begin{array}{rccc} : k[x,y] & \to & k[t] \\ & x & \mapsto & t^2 - 1 \\ & y & \mapsto & t(t^2 - 1) \end{array}$$

(b)

$$\sigma: k[s, t, u, w]/(s^2 - w, sw - tu) \rightarrow K[x, y, z]/(xy - z)$$

$$s \mapsto xy$$

$$t \mapsto yz$$

$$u \mapsto xz$$

$$w \mapsto z^2$$

The morphism constructed here is a mapping of the saddle surface to a surface in \mathbb{A}^4 .

- 3. Show that the mapping in 1b, above, is an isomorphism by showing that the induced mappings of coordinate rings is an isomorphism of rings.
- * 4. In 2a, above, let C denote the image of the corresponding mapping, $\phi : \mathbb{A}^1 \to \mathbb{A}^2$. Compute I(C). Draw a picture of C letting $k = \mathbb{R}$.
 - 5. We have seen that the parabola, $Z(y-x^2)$, is isomorphic to \mathbb{A}^1 . Show that the same is not true of the hyperbola, Z(xy-1). For a challenge consider the circle $Z(x^2+y^2-1)$. Is it ever isomorphic to the parabola? What if the characteristic of k is 2?

6. Zariski closure.

In a previous problem set, we discussed the Zariski topology on \mathbb{A}^n . The closed sets of the topology are taken to be algebraic sets, i.e., sets of the form Z(I) where I is an ideal of $R = k[x_1, \ldots, x_n]$. Consider \mathbb{A}^n with the Zariski topology.

- ★ (a) Let $X \subseteq \mathbb{A}^n$. Show that Z(I(X)) is the *closure* of set X. This means that Z(I(X)) smallest closed set containing X. (Show that if Y is a closed set containing X, then $Y \supseteq Z(I(X))$.)
 - (b) What is the closure (in the Zariski topology!) of the open unit disc centered at the origin in \mathbb{R}^2 ?
 - (c) What is the closure of the set $\{(n, n) : n \in \mathbb{Z}\}$ in $\mathbb{A}^2_{\mathbb{O}}$?
 - (d) Show that over an algebraically closed field (or just an infinite field), the closure of any nonempty open set of \mathbb{A}^n is \mathbb{A}^n , i.e., every nonempty open set is dense. (Again: this is quite a difference from the usual topology in the case of $k = \mathbb{R}$ or \mathbb{C} .)
- 7. Is the composition of two polynomial mappings necessarily a polynomial mapping?
- 8. Consider the curve $C = Z(y^3 x^4) \subset \mathbb{A}^2$. Find a mapping $\mathbb{A}^1 \to C$ that is one-to-one and onto but not an isomorphism.
- * 9. Suppose that k is algebraically closed, and let $X \subseteq \mathbb{A}_k^n$ be an algebraic set. Show that algebraic sets (respectively, varieties, points) contained in X are in one-to-one correspondence with radical ideals (respectively, prime ideals, maximal ideals) containing I(X).
- 10. Degeneracy locii.
 - (a) Show that the set of singular $n \times n$ matrices forms an algebraic set in \mathbb{A}^{n^2} . (An $n \times n$ matrix is singular if it has rank less than n.)
 - (b) Fix a nonnegative integer r. Show that $m \times n$ matrices of rank less than r forms an algebraic set in \mathbb{A}^{mn} .
 - \Box (c) Show that the above algebraic sets are varieties.
- 11. Let $\sigma: B \to A$ be a homomorphism of rings. Show that if $\mathfrak{p} \subseteq A$ is a prime ideal, then $\sigma^{-1}(\mathfrak{p})$ is a prime ideal of B. What if \mathfrak{p} is a maximal ideal?
- 12. Surjectivity.

Let $\phi : X \to Y$ be a morphism of algebraic sets, and let $\phi : A(Y) \to A(X)$ be the corresponding homomorphism of coordinate rings.

- (a) Show that if $\tilde{\phi}$ is onto, then X is isomorphic to the algebraic set $Z(\ker \tilde{\phi}) \subseteq Y$.
- (b) Show that if ϕ is onto, then ker $\tilde{\phi} = (0)$, i.e., $\tilde{\phi}$ is one-to-one.