$\star=$ more important problem $\quad \square=$ challenge
Again, k denotes a field, and $R=k\left[x_{1}, \ldots, x_{n}\right]$.
\star 1. Intersections and products of ideals. Let I and J be ideals of an arbitrary ring B.
(a) Show that $I \cap J \supseteq I J$. Given an example to show that the inclusion can be proper.
(b) Show that if $I+J=B$, then $I \cap J=I J$.
(c) If $B=R=k\left[x_{1}, \ldots, x_{n}\right]$, show that $Z(I \cap J)=Z(I J)$.

Thus, from this exercise and results from Problem Set 1, you should see that

$$
Z\left(I_{1}\right) \cup \cdots \cup Z\left(I_{m}\right)=Z\left(I_{1} \cap \cdots \cap I_{m}\right)=Z\left(I_{1} \cdots I_{m}\right)
$$

and

$$
\cap_{\alpha} Z\left(I_{\alpha}\right)=Z\left(\cup_{\alpha} I_{\alpha}\right)=Z\left(\sum_{\alpha} I_{\alpha}\right),
$$

where α runs over an arbitrary index set. The notation $\sum_{\alpha} I_{\alpha}$ denotes the collection of finite sums of the form $\sum_{\alpha} f_{\alpha}$ with $f_{\alpha} \in I_{\alpha}$.

\star 2. The Nullstellensatz.

For the following problems, assume that k is algebraically closed.
(a) Let $f_{1}, \ldots, f_{m} \in R$. Show that the system of equations $f_{1}=\cdots=f_{m}=0$ has no solutions iff 1 is an R-linear combination of the f_{i} :

$$
1=\sum_{i=1}^{n} g_{i} f_{i}
$$

for some polynomials $g_{i} \in R$. The implication still runs in one direction, even if k is not algebraically closed. Which one?
(b) Show that an ideal $I \subset R$ is maximal iff $I=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ for some $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}_{k}^{n}$. Show by example that this result does not hold if k is not algebraically closed. We will go over this problem during the lecture.
(c) If I is an ideal of R, not equal to R, then $Z(I) \neq \emptyset$. (This result is called the "weak Nullstellensatz".) Again, show this result does not hold if k is not algebraically closed.
3. Is 1 in the ideal $\left(x^{2}+y-3, x y^{2}+2 x, y^{3}\right)$? Does the answer depend on k ?
\star 4. Give the decomposition of $X=Z\left(z-x y, z^{2}-x y\right)$ into irreducibles over \mathbb{R}. List the corresponding prime ideals.
5. (a) Show that it possible for $I\left(\mathbb{A}_{k}^{n}\right) \neq(0)$.
\star (b) Show that $I\left(\mathbb{A}_{k}^{n}\right)=(0)$ if k is infinite. (Hint: induction on n.)
6. Cartesian products. Let $X \subset \mathbb{A}^{n}$ and $Y \subset A^{m}$ be algebraic sets.
(a) Show that

$$
X \times Y:=\left\{\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right) \in \mathbb{A}^{n+m}:\left(p_{1}, \ldots, p_{n}\right) \in X \text { and }\left(q_{1}, \ldots, q_{m}\right) \in Y\right\}
$$

is an algebraic set.(b) Show that if X and Y are varieties, so is $X \times Y$.
7. Let B be a ring. If $B[x]$ is Noetherian, does it follow that B is Noetherian? (Hint: Consider the mapping $\phi: B[x] \rightarrow B$ sending $f(x) \rightarrow f(0)$. To show an ideal I of B is finitely generated, look at $\phi^{-1}(I)$.)
8. Show that $\{(t, \cos (t)): t \in \mathbb{R}\}$ is not an algebraic set. (What can you say about a polynomial $f(x, y)$ such that $f(t, \cos (t))=0$ for all $t \in \mathbb{R}$?)

