Problem Set 2

⋆ = more important problem □ = challenge

Again, \(k \) denotes a field, and \(R = k[x_1, \ldots, x_n] \).

⋆ 1. Intersections and products of ideals. Let \(I \) and \(J \) be ideals of an arbitrary ring \(B \).

(a) Show that \(I \cap J \supseteq IJ \). Given an example to show that the inclusion can be proper.

(b) Show that if \(I + J = B \), then \(I \cap J = IJ \).

(c) If \(B = R = k[x_1, \ldots, x_n] \), show that \(Z(I \cap J) = Z(IJ) \).

Thus, from this exercise and results from Problem Set 1, you should see that

\[
Z(I_1) \cup \cdots \cup Z(I_m) = Z(I_1 \cap \cdots \cap I_m) = Z(I_1 \cdots I_m)
\]

and

\[
\cap _\alpha Z(I_\alpha) = Z(\cup _\alpha I_\alpha) = Z(\sum _\alpha I_\alpha),
\]

where \(\alpha \) runs over an arbitrary index set. The notation \(\sum _\alpha I_\alpha \) denotes the collection of finite sums of the form \(\sum _\alpha f_\alpha \) with \(f_\alpha \in I_\alpha \).

⋆ 2. The Nullstellensatz.

For the following problems, assume that \(k \) is algebraically closed.

(a) Let \(f_1, \ldots, f_m \in R \). Show that the system of equations \(f_1 = \cdots = f_m = 0 \) has no solutions iff 1 is an \(R \)-linear combination of the \(f_i \):

\[
1 = \sum _{i=1}^n g_i f_i
\]

for some polynomials \(g_i \in R \). The implication still runs in one direction, even if \(k \) is not algebraically closed. Which one?

(b) Show that an ideal \(I \subset R \) is maximal iff \(I = (x_1 - a_1, \ldots, x_n - a_n) \) for some \((a_1, \ldots, a_n) \in \mathbb{A}^n_k \). Show by example that this result does not hold if \(k \) is not algebraically closed. We will go over this problem during the lecture.

(c) If \(I \) is an ideal of \(R \), not equal to \(R \), then \(Z(I) \neq \emptyset \). (This result is called the “weak Nullstellensatz”.) Again, show this result does not hold if \(k \) is not algebraically closed.

□ 3. Is 1 in the ideal \((x^2 + y - 3, xy^2 + 2x, y^3) \)? Does the answer depend on \(k \)?
4. Give the decomposition of $X = Z(z - xy, z^2 - xy)$ into irreducibles over \mathbb{R}. List the corresponding prime ideals.

5. (a) Show that it possible for $I(\mathbb{A}^n_k) \neq (0)$.
 * (b) Show that $I(\mathbb{A}^n_k) = (0)$ if k is infinite. (Hint: induction on n.)

6. Cartesian products. Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be algebraic sets.

 (a) Show that

 $$X \times Y := \{(p_1, \ldots, p_n, q_1, \ldots, q_m) \in \mathbb{A}^{n+m} : (p_1, \ldots, p_n) \in X \text{ and } (q_1, \ldots, q_m) \in Y\}$$

 is an algebraic set.

 □ (b) Show that if X and Y are varieties, so is $X \times Y$.

7. Let B be a ring. If $B[x]$ is Noetherian, does it follow that B is Noetherian? (Hint: Consider the mapping $\phi: B[x] \to B$ sending $f(x) \to f(0)$. To show an ideal I of B is finitely generated, look at $\phi^{-1}(I)$.)

8. Show that $\{(t, \cos(t)) : t \in \mathbb{R}\}$ is not an algebraic set. (What can you say about a polynomial $f(x, y)$ such that $f(t, \cos(t)) = 0$ for all $t \in \mathbb{R}$?)