PCMI 2008 Undergraduate Summer School Lecture 1: The Dictionary

David Perkinson

Reed College Portland, OR

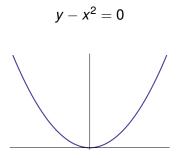
Summer 2008

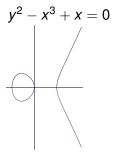
Introduction

Algebraic geometry is the study of solutions to systems of polynomial equations.

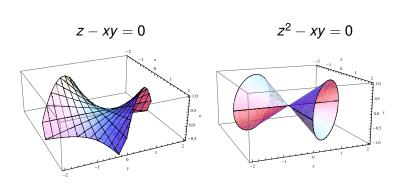
$$\begin{cases} f_1(x_1,\ldots,x_n) &= 0 \\ f_2(x_1,\ldots,x_n) &= 0 \\ \vdots &\vdots \vdots \\ f_m(x_1,\ldots,x_n) &= 0 \end{cases}$$

Examples



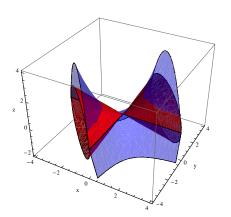


Examples



Examples

$$z - xy = 0$$
$$z^2 - xy = 0$$



Basic notation and definitions

- k field, e.g. \mathbb{R} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$.
- $R = k[x_1, ..., x_n]$, polynomial ring over k
- affine *n*-space

$$\mathbb{A}^n = \mathbb{A}^n_k = k^n = \{(a_1, \dots, a_n) : a_i \in k \text{ for all } i\}.$$

zero sets

• $f_1,\ldots,f_m\in R$,

$$Z(f_1,...,f_m) = \{ p \in \mathbb{A}^n : f_1(p) = \cdots = f_m(p) = 0 \}$$

E ⊆ R,

$$Z(E) = \{ p \in \mathbb{A}^n : f(p) = 0 \text{ for all } p \in E \} = \bigcap_{f \in E} Z(f)$$

Definition

 $X \subseteq \mathbb{A}^n$ is an algebraic set if X = Z(E) for some $E \subseteq R$.

Definition

The ideal of $X \subseteq \mathbb{A}^n$ is

$$I(X) = \{ f \in R : f(p) = 0 \text{ for all } p \in X \}$$

Correspondence

Algebra		Geometry
subsets of R	\longleftrightarrow	subsets of \mathbb{A}^n
E	\rightarrow	Z(E)
I(X)	\leftarrow	X

Proposition

Given $E \subset R$, let J be the ideal generated by E:

$$J = (E)$$

$$= \{\sum f_i g_i : f_i \in R, g_i \in E\}$$

Then

$$Z(S)=Z(J).$$

Better Correspondence

Algebra		Geometry	
ideals of R	\longleftrightarrow	algebraic sets in \mathbb{A}^n	
J	\rightarrow	Z(J)	
I(X)	\leftarrow	X	

Radical ideals

Definition

The radical of an ideal $I \subseteq R$ is

$$rad(I) = \{ f \in R : f^m \in I \text{ for some } m \in \mathbb{Z}_{>0} \}.$$

An ideal $I \subseteq R$ is radical if

$$I = rad(I)$$
.

Note: For $X \subseteq \mathbb{A}^n$, the ideal I(X) is radical.

Better Correspondence

Algebra		Geometry
radical ideals	\longleftrightarrow	algebraic sets
J	\rightarrow	Z(J)
I(X)	\leftarrow	X

Theorem

If k is algebraically closed, then this is a one-to-one correspondence.