Algebraic geometry of sandpiles

Tilings

Complexity o

PCMI 2008 Undergraduate Summer School Lecture 15: Sandpiles

David Perkinson

Reed College Portland, OR

Summer 2008

Algebraic geometry of sandpiles

Tilings

Complexity o

- Self-Organized Criticality: An Explanation of 1/f Noise, Bak, Tang, Wiesenfeld, Physical Review Letters, 1987.
- Self-Organized Critical State of Sandpile Automaton Models, Dhar, Physical Review Letters, 1990.

Algebraic geometry of sandpiles

Tilings 00000 Complexity o

Abelian Sandpile Model

Notation

G = (V, E, s): finite, connected, loopless, multigraph with a distinguished vertex *s* called the sink

sandpile configurations: \mathbb{N}^{V_s} where $V_s = V \setminus \{s\}$

monoid structure: $(c+c')_v = c_v + c'_v$ for all $v \in V_s$

The Sandpile Group	Algebraic geometry of sandpiles	Tilings 00000	Complexity o
Stability			

$$\deg(v) = |\{\{v, w\} \in E : w \in V\}|$$

 $v \in V_s$ is stable in a configuration c if $c_v < \deg(v)$

Toppling

If v is an unstable vertex in c, we get a new configuration c' by toppling c at v:

$$c'_w = \left\{ egin{array}{cl} c_w + 1 & ext{if } \{v,w\} \in E \ c_w - \deg(w) & ext{if } w = v \ c_w & ext{otherwise} \end{array}
ight.$$

- By a series of topplings, every configuration reaches a stable configuration.
- This stable configuration is independent of the ordering of the topplings.

Algebraic geometry of sandpiles

Tilings

Complexity o

Monoid of Stable Sandpiles

Let $\ensuremath{\mathcal{S}}$ denote the commutative monoid of stable sandpile configurations with addition define by

$$c \circledast c' = \text{stabilization}(c + c').$$

Algebraic geometry of sandpiles

Tilings 00000 Complexity o

Recurrent Configurations

Definition

A stable configuration c is recurrent if given any configuration c', there exists a configuration c'' such that

stabilization(c' + c'') = c.

Example

Define c_{\max} by $(c_{\max})_{\nu} = \deg \nu - 1$. Then c_{\max} is recurrent.

HW

The recurrent configurations are exactly configurations that can be reached by adding sand to $c_{\rm max}$ and stabilizing.

Algebraic geometry of sandpiles

Tilings

Complexity o

The Sandpile Group

Theorem/Definition

The collection of recurrent configurations, \mathcal{G} is a group called the sandpile group.

Interesting question: What is the identity of *G*? Algebraic geometry of sandpiles

Tilings 00000 Complexity o

Algebraic geometry of sandpiles

Tilings

Complexity o

Laplacian

Let
$$V_s = \{v_1, ..., v_n\}.$$

Definition

The reduced Laplacian matrix for G is the $n \times n$ matrix, L, where

$$\mathcal{L}_{ij} = \left\{ egin{array}{ll} \deg v_i & ext{if } i=j \ -m & ext{if } \{i,j\} \in E, \ m ext{ times} \ 0 & ext{otherwise} \end{array}
ight.$$

Note

If c is a configuration with unstable vertex v_i , then

$$c - Le_i$$

is the configuration obtained by toppling v_i .

The	Sand	pile	Group
000	0000	000	

Algebraic geometry of sandpiles

Tilings

Complexity o

Theorem

$\mathcal{G} \approx \mathbb{Z}^n / \textit{image}(L)$

Corollary

$$|\mathcal{G}| = \det L = the number of spanning trees of G$$

Proof. Matrix-tree theorem.

Algebraic geometry of sandpiles

Let
$$V = \{v_1, ..., v_{n+1}\}$$
 where

- $v_{n+1} = s$, the sink.
- If v_i is farther than v_j from the sink, then i > j.

Label v_i with the indeterminate x_i for each *i*.

For
$$i \in \{1, ..., n + 1\}$$
,
 $p_i = x_i^{\deg v_i} - \prod_{j: \{v_i, v_j\} \in E} x_j$, setting $x_{n+1} = 1$.

Definition

The sandpile ideal for G is

$$I_G = (p_i : i = 1, \dots, n+1) \subseteq \mathbb{C}[x_1, \dots, x_n]$$

Consider $\mathbb{C}[x_1, \ldots, x_n]$ with graded revlex monomial ordering and

 $x_1 > \cdots > x_n$.

Theorem (Cori, Rossin, Salvy, 2006)

A normal basis for $\mathbb{C}[x_1, \ldots, x_n]/I_G$ with respect to the above ordering is in one-to-one correspondence with the elements of the sandpile group, \mathcal{G} :

$$x^e \leftrightarrow C_{\max} - e.$$

Theorem (P., 2008)

 $Z(I_G) \subset \mathbb{A}^n$ is a set of $|\mathcal{G}|$ points forming an orbit of a representation of \mathcal{G} by a group of $n \times n$ matrices.

Algebraic geometry of sandpiles

Tilings

Complexity o

Theorem (Baker, et al., 2007)

There is more than an analogy between algebraic curves and graphs: Riemann-Roch, Riemann-Hurwitz, Jacobi inversion, etc. The sandpile group plays the role of the Picard group.

Corollary

The postulation number for the (homgenization of the) sandpile ideal is the genus of the graph: g = |E| - |V| + 1.

Algebraic geometry of sandpiles

Tilings •0000 Complexity o

Order of the all-2s sandpile on an even square grid Let g_n be the order of the all-2s element of a $2n \times 2n$ grid. The first few values of g_n are

*g*_n : 1, 3, 29, 901, 89893

Algebraic geometry of sandpiles

Tilings

Complexity o

Tilings of the even square grid

Let T_n be the number of domino tilings of a $2n \times 2n$ grid.

$$T_n = 4^{n^2} \prod_{i,j=1}^n \left(\cos^2 \frac{i\pi}{2n+1} + \cos^2 \frac{j\pi}{2n+1} \right)$$

= $2^n a_n^2$

where the first few values of a_n are

 a_n : 1, 3, 29, 901, 89893

Algebraic geometry of sandpiles

Tilings

Complexity

A few more values of a_n and g_n

an	1	3	29	901	89,893	28,793,575	29,607,089,625
g _n	1	3	29	901	89,893	5,758,715	22,687,425

Algebraic geometry of sandpiles

Tilings

Complexity o

Theorem (Morar, P., 2007)

For each n, there are graphs P_n and A_n such that

- The number of domino tilings (perfect matchings) of A_n is a_n.
- The spanning trees of *P_n* are in 1-1 correspondence with the domino tilings of *A_n*.
- The cyclic subgroup generated by the all-2s element injects into the sandpile group of P_n.

Thus, g_n divides a_n .

Algebraic geometry of sandpiles

Tilings

Complexity

Theorem (Morar, P., 2007)

Let F_i be the *i*-th Fibonnaci number (starting with $F_1 = F_2 = 1$). The order of the all-2s element for the 2 × n grid is:

for n = 2m,

order(*all 2s*) =
$$\begin{cases} F_{n+1}/2 & \text{if } 3|(m-1)\\ F_{n+1} & \text{otherwise.} \end{cases}$$

2 for n = 2m - 1,

order(*all-2s*) =
$$\begin{cases} (F_n + F_{n+2})/2 & \text{if } 3|m \\ F_n + F_{n+2} & \text{otherwise.} \end{cases}$$

In particular, the order of the all-2s element is odd.

Algebraic geometry of sandpiles

Tilings

Complexity

Complexity

Sandpile as a universal computer, Goles and Margenstern, International Journal of Modern Physics, 1996.

Constructing a sandpile machine, Schoenberg-Jones, Reed College Thesis, 2008.