$\star$ 1. Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be a monomial ideal generated by a set of monomials $M$. Show that $f \in I$ iff each term of $f$ is divisible by some monomial in $M$.

* 2. Calculate the Hilbert function of $I=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}\right)$ by hand using the algorithm presented in Lecture 13.
$\star 3$. Order the terms in the following polynomials using lex, deglex, and revlex ordering, in turn. What is the initial term in each case?
(a) $f=x+3 x-x^{2}+z^{2}-y^{3}$.
(b) $g=x^{2} y z+x y^{6}+2 x y^{3}-4 x^{2} y^{3} z^{2}$.
$\star$ 4. Give a simple example of an ideal $I=\left(f_{1}, \ldots, f_{s}\right)$ such that in $\operatorname{lin}_{>}(I) \neq\left(\operatorname{in}_{>}\left(f_{1}\right), \ldots\right.$, in $\left._{>}\left(f_{s}\right)\right)$.
* 5. Macaulay's theorem. Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ with monomial ordering $>$, and let $I \subseteq S$ be an ideal. Let $B$ be the set of monomials of $S$ that are not in in ${ }_{>}(I)$. Prove that $B$ is a $k$-vector space basis for $S / I$.

Hints:
(a) To show linear independence, let $f=\sum \alpha_{i} x^{a_{i}} \in S$ with $\alpha_{i} \neq 0$ and $x^{a_{i}} \in B$. Suppose that $f=0 \in S / I$, i.e., $f \in I$. Now think about the initial term of $f$.
(b) To show $B$ spans, suppose it does not. Among all elements of $S / I$ not in the span of $B$, choose one, $f$, with a smallest initial term. There are two cases to consider depending on whether $\operatorname{in}_{>}(f) \in \operatorname{in}_{>}(I)$. In either case, argue there is an element of $S / I$ not in the span of $B$ but with an even smaller initial term.
6. With $I \subset S$ as in the previous problem, Macaulay's theorem says that $S / I$ and $S / \mathrm{in}_{>}(I)$ are isomophic as $k$-vector spaces but not necessarily as rings. Now let $S=k[x, y]$ with deglex monomial ordering, and let $I=\left(y-x^{2}\right)$.
(a) Use Macaulay's theorem to exhibit $k$-bases of $S / I$ and of $S / \mathrm{in}_{>}(I)$ consisting of the same set of monomials.
(b) Show that $S / I$ and $S / \mathrm{in}_{>}(I)$ are not isomorphic as rings.
7. Let $x^{a_{1}}$ be a monomial and $I^{\prime}=\left(x^{a_{2}}, \ldots, x^{a_{s}}\right)$ be a monomial ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. In Lecture 13 , we considered the mapping which is multiplication by $x^{a_{1}}$ :

$$
S \xrightarrow{x^{a_{1}}} S / I^{\prime}
$$

Show that

$$
\operatorname{ker}\left(\cdot x^{a_{1}}\right)=\left(\frac{x^{a_{2}}}{\operatorname{gcd}\left(x^{a_{1}}, x^{a_{2}}\right)}, \ldots, \frac{x^{a_{s}}}{\operatorname{gcd}\left(x^{a_{1}}, x^{a_{s}}\right)}\right)
$$

where $\operatorname{gcd}\left(x^{a}, x^{b}\right)=x_{1}^{\min \left\{a_{1}, b_{1}\right\}} \cdots x_{n}^{\min \left\{a_{n}, b_{n}\right\}}$.

