PCMI USS 2008

- * 1. Let $I \subseteq k[x_1, \ldots, x_n]$ be a monomial ideal generated by a set of monomials M. Show that $f \in I$ iff each term of f is divisible by some monomial in M.
- * 2. Calculate the Hilbert function of $I = (x_1x_3, x_1x_4, x_2x_4)$ by hand using the algorithm presented in Lecture 13.
- * 3. Order the terms in the following polynomials using lex, deglex, and revlex ordering, in turn. What is the initial term in each case?

(a)
$$f = x + 3x - x^2 + z^2 - y^3$$
.

(b)
$$g = x^2yz + xy^6 + 2xy^3 - 4x^2y^3z^2$$
.

- * 4. Give a simple example of an ideal $I = (f_1, \ldots, f_s)$ such that $in_>(I) \neq (in_>(f_1), \ldots, in_>(f_s))$.
- * 5. Macaulay's theorem. Let $S = k[x_1, \ldots, x_n]$ with monomial ordering >, and let $I \subseteq S$ be an ideal. Let B be the set of monomials of S that are not in $in_>(I)$. Prove that B is a k-vector space basis for S/I.

Hints:

- (a) To show linear independence, let $f = \sum \alpha_i x^{a_i} \in S$ with $\alpha_i \neq 0$ and $x^{a_i} \in B$. Suppose that $f = 0 \in S/I$, i.e., $f \in I$. Now think about the initial term of f.
- (b) To show B spans, suppose it does not. Among all elements of S/I not in the span of B, choose one, f, with a smallest initial term. There are two cases to consider depending on whether $in_>(f) \in in_>(I)$. In either case, argue there is an element of S/I not in the span of B but with an even smaller initial term.
- 6. With $I \subset S$ as in the previous problem, Macaulay's theorem says that S/I and $S/in_>(I)$ are isomophic as k-vector spaces but not necessarily as rings. Now let S = k[x, y] with deglex monomial ordering, and let $I = (y x^2)$.
 - (a) Use Macaulay's theorem to exhibit k-bases of S/I and of $S/in_>(I)$ consisting of the same set of monomials.
 - (b) Show that S/I and $S/in_>(I)$ are not isomorphic as rings.
- 7. Let x^{a_1} be a monomial and $I' = (x^{a_2}, \ldots, x^{a_s})$ be a monomial ideal in $k[x_1, \ldots, x_n]$. In Lecture 13, we considered the mapping which is multiplication by x^{a_1} :

$$S \xrightarrow{\cdot x^{a_1}} S/I'.$$

Show that

$$\ker(\cdot x^{a_1}) = \left(\frac{x^{a_2}}{\gcd(x^{a_1}, x^{a_2})}, \dots, \frac{x^{a_s}}{\gcd(x^{a_1}, x^{a_s})}\right)$$

where $gcd(x^a, x^b) = x_1^{\min\{a_1, b_1\}} \cdots x_n^{\min\{a_n, b_n\}}$.