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Gröbner Bases

Gröbner bases are the central tool of computational algebraic
geometry.

Examples of computations for which they are useful:

the ideal membership problem: f
?
∈ I;

Hilbert functions;
resolutions;
elimination theory;
finding solutions to systems of equations;
intersections of ideals.
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Main Idea

Reduce all problems in polynomial rings to problems
concerning monomials.
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Notation

S = k [x1, . . . , xn].

monomial: xa = xa1
1 · · · xan

n

exponent vector for xa: a = (a1, . . . , an)

degree: deg xa = |a| =
∑

i ai

term: αxa where α ∈ k
Every polynomial is a sum of terms.

monomial ideal: an ideal generated by monomials

division of monomials: xa|xb if xb = f xa for some f ∈ S.
xa|xb iff b ≥ a, i.e., bi ≥ ai for all i .
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Membership problem

1
?
∈ (x2 + y − 3, xy2 + 2x , y3)

Yes!

1 =
−1
27

(y2 + 3y + 9)(x2 + y − 3)

− 1
108

(xy4 + 3xy3 + 7xy2 − 6xy − 18x)(xy2 + 2x)

+
1

108
(x2y3 + 3x2y2 + 9x2y + 4)y3

The problem is easier for monomial ideals. . .
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Proposition
Let I ⊆ S be a monomial ideal generated by a set of
monomials M. Then f ∈ I iff each term of f is divisible by some
monomial in M.

Proof.
HW.

Corollary
Every monomial ideal is generated by a finite set of monomials.

Proof.
Hilbert basis theorem and the above Proposition.

Challenge: Prove this without recourse to the Hilbert basis
theorem. (Consider the exponents of any monomial generating
set. Which are necessary?)
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Definition
The Hilbert function for a homogeneous ideal
I ⊆ S = k [x1, . . . , xn] is the function

HS/I(d) = dimk Sd/Id .

First Goal
Calculate the Hilbert polynomial of the monomial ideal

I = (xa1 , . . . , xas).
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Write
I = (xa1) + I′

where I′ = (xa2 , . . . , xas), and consider the sequence

S(−|a1|)
·xa1−→ S/I′ π−→ S/I −→ 0

where |a1| =
∑

i a1i = deg xa1 .

Claim
The sequence is exact: image(·xa1) = ker π.
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I = (xa1 , . . . , xas) = (xa1) + I′

S(−|a1|)
·xa1−→ S/I′ π−→ S/I −→ 0

Claim: the sequence is exact: image(·xa1) = ker π.

Proof.
Say π(f ) = 0.
Pick a representative for f in S. Call it f .
We may assume f has no terms divisible by xa2 , . . . , xas .
π(f ) = 0 =⇒ f ∈ (xa1 , . . . , xas).
Earlier Proposition implies each term of f is divisible by
some xai .
Thus, xa1 |f , so f ∈ image(·xa1).
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S(−|a1|)
·xa1−→ S/I′ π−→ S/I −→ 0

HW

ker(·xa1) =

(
xa2

gcd(xa1 , xa2)
, . . . ,

xas

gcd(xa1 , xas)

)
where gcd(xa, xb) = xmin{a1,b1}

1 · · · xmin{an,bn}
n .

Let J = ker(·xa1) to get the short exact sequence

0 → S/J(−|a1|)
·xa1−→ S/I′ −→ S/I → 0
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Calculating the Hilbert function of S/I

0 → S/J(−|a1|)
·xa1−→ S/I′ −→ S/I → 0

Take degrees:

0 → (S/J)d−|a1|
·xa1−→ (S/I′)d −→ (S/I)d → 0

Hilbert function

HS/I(d) = HS/I′(d)− HS/J(d − |a1|).

I′ and J are monomial ideals with fewer generators. Repeat.
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Next Goal
Reduce the problem of calculating the Hilbert function of an
arbitrary ideal to the problem of calculating the Hilbert function
of a monomial ideal.
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Monomial Orderings

Definition
A monomial ordering on S = k [x1, . . . , xn] is a total ordering on
the monomials of S such that

1 xb > xa =⇒ xcxb > xcxa for all xc ;
2 1 is the smallest monomial.
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lex: Lexicographical Ordering

xb >lex xa if the left-most nonzero entry of b − a is positive.
(Mantra: more of the early variables)

x2 > xy > xz > x > y2 > yz > y > z2 > z > 1

deglex: Degree Lexicographical Ordering

xb >deglex xa if |b| > |a| or if |b| = |a| and xb >lex xa. (Mantra:
By degree, breaking ties with lex)

x2 > xy > xz > y2 > yz > z2 > x > y > z > 1

revlex: Reverse Lexicographical Ordering

xb >revlex xa if |b| > |a| or if |b| = |a| and the right-most nonzero
entry of b − a is negative. (Mantra: fewer of the late variables)

x2 > xy > y2 > xz > yz > z2 > x > y > z > 1
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Notes
From now on, fix a monomial ordering, >, on
S = k [x1, . . . , xn].
We will also compare terms: for nonzero α, β ∈ k ,

αxb > βxa if xb > xa.

Definition
The initial term of f ∈ S, denoted in>(f ), is the largest term
of f with respect to >.
The initial ideal of an ideal I is the monomial ideal

in>(I) = (in>(f ) : f ∈ I).
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Macaulay’s Theorem

A preliminary

Lemma
Every nonempty set of monomials {xai} has a least element.

Proof.
Since S is Noetherian the ideal generated by the monomials is
generated by a finite subset. Take a least element of this
subset.
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Theorem (Macaulay)
Let I ⊆ S be an ideal and > a monomial ordering. Let B be the
set of monomials of S not contained in in>(I). Then B is a
k-vector space basis for S/I.

Proof.
HW (minimal criminal argument).

Corollary

HS/I = HS/in>(I)

Important Point: We have reduced the problem of computing
the Hilbert function of an ideal to that of computing the Hilbert
function of a monomial ideal.
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