Membership for Mon. Ideals

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

PCMI 2008 Undergraduate Summer School Lecture 13: Gröbner Bases I

David Perkinson

Reed College Portland, OR

Summer 2008

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

Gröbner Bases

Gröbner bases are the central tool of computational algebraic geometry.

Examples of computations for which they are useful:

- the ideal membership problem: $f \in I$;
- Hilbert functions;
- resolutions;
- elimination theory;
- finding solutions to systems of equations;
- intersections of ideals.

Introduction	Membership for Mon. Ideals	Hilbert Function for Mon. Ideals	Monomial Orderings	Macaulay's Theo 00
		A REAL PROPERTY OF A		

Main Idea

Reduce all problems in polynomial rings to problems concerning monomials.

Membership for Mon. Ideals

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

Notation

$$S = k[x_1,\ldots,x_n].$$

- monomial: $x^a = x_1^{a_1} \cdots x_n^{a_n}$
- exponent vector for x^a : $a = (a_1, \ldots, a_n)$
- degree: deg $x^a = |a| = \sum_i a_i$
- term: αx^a where $\alpha \in k$
 - Every polynomial is a sum of terms.
- monomial ideal: an ideal generated by monomials
- division of monomials: $x^a | x^b$ if $x^b = f x^a$ for some $f \in S$.
 - $x^a | x^b$ iff $b \ge a$, i.e., $b_i \ge a_i$ for all i.

Membership for Mon. Ideals

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

Membership problem

$$1 \stackrel{?}{\in} (x^2 + y - 3, xy^2 + 2x, y^3)$$

Yes!

$$1 = \frac{-1}{27}(y^2 + 3y + 9)(x^2 + y - 3)$$

- $\frac{1}{108}(xy^4 + 3xy^3 + 7xy^2 - 6xy - 18x)(xy^2 + 2x)$
+ $\frac{1}{108}(x^2y^3 + 3x^2y^2 + 9x^2y + 4)y^3$

The problem is easier for monomial ideals...

Proposition

Let $I \subseteq S$ be a monomial ideal generated by a set of monomials M. Then $f \in I$ iff each term of f is divisible by some monomial in M.

Proof.

HW.

Corollary

Every monomial ideal is generated by a finite set of monomials.

Proof.

Hilbert basis theorem and the above Proposition.

Challenge: Prove this without recourse to the Hilbert basis theorem. (Consider the exponents of any monomial generating set. Which are necessary?)

Introduction	Membership for Mon. Ideals	Hilbert Function for Mon. Ideals	Monomial Orderings	Macaulay's Theorem
000	00	00000	000	00

Definition

The Hilbert function for a homogeneous ideal $I \subseteq S = k[x_1, ..., x_n]$ is the function

 $H_{S/I}(d) = \dim_k S_d/I_d.$

First Goal

Calculate the Hilbert polynomial of the monomial ideal

$$I=(x^{a_1},\ldots,x^{a_s}).$$

Introduction	Membership for Mon. Ideals	Hilbert Function for Mon. Ideals	Monomial Orderings	Macaulay's Theorem
000	00	00000	000	00

Write

$$I=(x^{a_1})+I'$$

where $I' = (x^{a_2}, \ldots, x^{a_s})$, and consider the sequence

$$S(-|a_1|) \xrightarrow{\cdot x^{a_1}} S/I' \xrightarrow{\pi} S/I \longrightarrow 0$$

where $|a_1| = \sum_i a_{1i} = \deg x^{a_1}$.

Claim

The sequence is exact: image($\cdot x^{a_1}$) = ker π .

ntroduction Membership

embership for Mon. Ideals

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

$$I = (x^{a_1}, \ldots, x^{a_s}) = (x^{a_1}) + I'$$

$$S(-|a_1|) \xrightarrow{\cdot X^{a_1}} S/I' \xrightarrow{\pi} S/I \longrightarrow 0$$

Claim: the sequence is exact: image($\cdot x^{a_1}$) = ker π .

Proof.

- Pick a representative for *f* in *S*. Call it *f*.
- We may assume *f* has no terms divisible by x^{a_2}, \ldots, x^{a_s} .

•
$$\pi(f) = 0 \implies f \in (x^{a_1}, \ldots, x^{a_s}).$$

• Earlier Proposition implies each term of *f* is divisible by some *x*^{*a*^{*i*}.}

• Thus,
$$x^{a_1}|f$$
, so $f \in \text{image}(\cdot x^{a_1})$.

Introduction	Membership	for	Mon.
000	00		

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

$$S(-|a_1|) \xrightarrow{\cdot x^{a_1}} S/I' \xrightarrow{\pi} S/I \longrightarrow 0$$

HW

$$\ker(\cdot x^{a_1}) = \left(\frac{x^{a_2}}{\gcd(x^{a_1}, x^{a_2})}, \dots, \frac{x^{a_s}}{\gcd(x^{a_1}, x^{a_s})}\right)$$

where $\gcd(x^a, x^b) = x_1^{\min\{a_1, b_1\}} \cdots x_n^{\min\{a_n, b_n\}}.$

Let $J = \ker(\cdot x^{a_1})$ to get the short exact sequence

$$0 o S/J(-|a_1|) \xrightarrow{\cdot X^{a_1}} S/I' \longrightarrow S/I o 0$$

embership for Mon. Ideals

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem oo

Calculating the Hilbert function of S/I

$$0 \to S/J(-|a_1|) \xrightarrow{\cdot x^{a_1}} S/l' \longrightarrow S/l \to 0$$

Take degrees:

$$0
ightarrow (S/J)_{d-|a_1|} \stackrel{\cdot_{X^{a_1}}}{\longrightarrow} (S/I')_d \longrightarrow (S/I)_d
ightarrow 0$$

Hilbert function

$$H_{S/I}(d) = H_{S/I'}(d) - H_{S/J}(d - |a_1|).$$

I' and J are monomial ideals with fewer generators. Repeat.

duction Membership for Mon. Ideal

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

Next Goal

Reduce the problem of calculating the Hilbert function of an arbitrary ideal to the problem of calculating the Hilbert function of a monomial ideal.

Vembership for Mon. Ideals

Hilbert Function for Mon. Ideals

Monomial Orderings

Macaulay's Theorem

Monomial Orderings

Definition

A monomial ordering on $S = k[x_1, ..., x_n]$ is a total ordering on the monomials of S such that

$$x^b > x^a \implies x^c x^b > x^c x^a \text{ for all } x^c;$$

I is the smallest monomial.

troduction Membership for Mon. Ideals Hilbert Function for Mon. Ide

Monomial Orderings

Macaulay's Theorem

lex: Lexicographical Ordering

 $x^b >_{\text{lex}} x^a$ if the left-most nonzero entry of b - a is positive. (Mantra: more of the early variables)

$$x^2 > xy > xz > x > y^2 > yz > y > z^2 > z > 1$$

deglex: Degree Lexicographical Ordering

 $x^b >_{\text{deglex}} x^a$ if |b| > |a| or if |b| = |a| and $x^b >_{\text{lex}} x^a$. (Mantra: By degree, breaking ties with lex)

$$x^2 > xy > xz > y^2 > yz > z^2 > x > y > z > 1$$

revlex: Reverse Lexicographical Ordering

 $x^b >_{\text{revlex}} x^a$ if |b| > |a| or if |b| = |a| and the right-most nonzero entry of b - a is negative. (Mantra: fewer of the late variables)

$$x^2 > xy > y^2 > xz > yz > z^2 > x > y > z > 1$$

Introduction	Membership for Mon. Ideals	Hilbert Function for Mon. Ideals	Monomial Orderings	Macaulay's Theorem
000	00	000000	000	00

Notes

- From now on, fix a monomial ordering, >, on $S = k[x_1, ..., x_n]$.
- We will also compare terms: for nonzero $\alpha, \beta \in k$,

$$\alpha x^b > \beta x^a$$
 if $x^b > x^a$.

Definition

- The initial term of *f* ∈ *S*, denoted in_>(*f*), is the largest term of *f* with respect to >.
- The initial ideal of an ideal I is the monomial ideal

 $in_{>}(I) = (in_{>}(f) : f \in I).$

Hilbert Function for Mon. Ideal

Monomial Orderings

Macaulay's Theorem

Macaulay's Theorem

A preliminary

Lemma

Every nonempty set of monomials $\{x^{a_i}\}$ has a least element.

Proof.

Since *S* is Noetherian the ideal generated by the monomials is generated by a finite subset. Take a least element of this subset.

Theorem (Macaulay)

Let $I \subseteq S$ be an ideal and > a monomial ordering. Let B be the set of monomials of S not contained in $in_>(I)$. Then B is a *k*-vector space basis for S/I.

Proof. HW (minimal criminal argument).

Corollary

$$H_{\mathcal{S}/I} = H_{\mathcal{S}/\mathrm{in}_{>}(I)}$$

Important Point: We have reduced the problem of computing the Hilbert function of an ideal to that of computing the Hilbert function of a monomial ideal.